Spaces:
Running
Running
import sys | |
sys.path.append("..") | |
sys.path.append("./sam") | |
from sam.segment_anything import sam_model_registry, SamAutomaticMaskGenerator | |
from aot_tracker import get_aot | |
import numpy as np | |
from tool.segmentor import Segmentor | |
from tool.detector import Detector | |
from tool.transfer_tools import draw_outline, draw_points | |
import cv2 | |
from seg_track_anything import draw_mask | |
class SegTracker(): | |
def __init__(self,segtracker_args, sam_args, aot_args) -> None: | |
""" | |
Initialize SAM and AOT. | |
""" | |
self.sam = Segmentor(sam_args) | |
self.tracker = get_aot(aot_args) | |
self.detector = Detector(self.sam.device) | |
self.sam_gap = segtracker_args['sam_gap'] | |
self.min_area = segtracker_args['min_area'] | |
self.max_obj_num = segtracker_args['max_obj_num'] | |
self.min_new_obj_iou = segtracker_args['min_new_obj_iou'] | |
self.reference_objs_list = [] | |
self.object_idx = 1 | |
self.curr_idx = 1 | |
self.origin_merged_mask = None # init by segment-everything or update | |
self.first_frame_mask = None | |
# debug | |
self.everything_points = [] | |
self.everything_labels = [] | |
print("SegTracker has been initialized") | |
def seg(self,frame): | |
''' | |
Arguments: | |
frame: numpy array (h,w,3) | |
Return: | |
origin_merged_mask: numpy array (h,w) | |
''' | |
frame = frame[:, :, ::-1] | |
anns = self.sam.everything_generator.generate(frame) | |
# anns is a list recording all predictions in an image | |
if len(anns) == 0: | |
return | |
# merge all predictions into one mask (h,w) | |
# note that the merged mask may lost some objects due to the overlapping | |
self.origin_merged_mask = np.zeros(anns[0]['segmentation'].shape,dtype=np.uint8) | |
idx = 1 | |
for ann in anns: | |
if ann['area'] > self.min_area: | |
m = ann['segmentation'] | |
self.origin_merged_mask[m==1] = idx | |
idx += 1 | |
self.everything_points.append(ann["point_coords"][0]) | |
self.everything_labels.append(1) | |
obj_ids = np.unique(self.origin_merged_mask) | |
obj_ids = obj_ids[obj_ids!=0] | |
self.object_idx = 1 | |
for id in obj_ids: | |
if np.sum(self.origin_merged_mask==id) < self.min_area or self.object_idx > self.max_obj_num: | |
self.origin_merged_mask[self.origin_merged_mask==id] = 0 | |
else: | |
self.origin_merged_mask[self.origin_merged_mask==id] = self.object_idx | |
self.object_idx += 1 | |
self.first_frame_mask = self.origin_merged_mask | |
return self.origin_merged_mask | |
def update_origin_merged_mask(self, updated_merged_mask): | |
self.origin_merged_mask = updated_merged_mask | |
# obj_ids = np.unique(updated_merged_mask) | |
# obj_ids = obj_ids[obj_ids!=0] | |
# self.object_idx = int(max(obj_ids)) + 1 | |
def reset_origin_merged_mask(self, mask, id): | |
self.origin_merged_mask = mask | |
self.curr_idx = id | |
def add_reference(self,frame,mask,frame_step=0): | |
''' | |
Add objects in a mask for tracking. | |
Arguments: | |
frame: numpy array (h,w,3) | |
mask: numpy array (h,w) | |
''' | |
self.reference_objs_list.append(np.unique(mask)) | |
self.curr_idx = self.get_obj_num() + 1 | |
self.tracker.add_reference_frame(frame,mask, self.curr_idx - 1, frame_step) | |
def track(self,frame,update_memory=False): | |
''' | |
Track all known objects. | |
Arguments: | |
frame: numpy array (h,w,3) | |
Return: | |
origin_merged_mask: numpy array (h,w) | |
''' | |
pred_mask = self.tracker.track(frame) | |
if update_memory: | |
self.tracker.update_memory(pred_mask) | |
return pred_mask.squeeze(0).squeeze(0).detach().cpu().numpy().astype(np.uint8) | |
def get_tracking_objs(self): | |
objs = set() | |
for ref in self.reference_objs_list: | |
objs.update(set(ref)) | |
objs = list(sorted(list(objs))) | |
objs = [i for i in objs if i!=0] | |
return objs | |
def get_obj_num(self): | |
objs = self.get_tracking_objs() | |
if len(objs) == 0: return 0 | |
return int(max(objs)) | |
def find_new_objs(self, track_mask, seg_mask): | |
''' | |
Compare tracked results from AOT with segmented results from SAM. Select objects from background if they are not tracked. | |
Arguments: | |
track_mask: numpy array (h,w) | |
seg_mask: numpy array (h,w) | |
Return: | |
new_obj_mask: numpy array (h,w) | |
''' | |
new_obj_mask = (track_mask==0) * seg_mask | |
new_obj_ids = np.unique(new_obj_mask) | |
new_obj_ids = new_obj_ids[new_obj_ids!=0] | |
# obj_num = self.get_obj_num() + 1 | |
obj_num = self.curr_idx | |
for idx in new_obj_ids: | |
new_obj_area = np.sum(new_obj_mask==idx) | |
obj_area = np.sum(seg_mask==idx) | |
if new_obj_area/obj_area < self.min_new_obj_iou or new_obj_area < self.min_area\ | |
or obj_num > self.max_obj_num: | |
new_obj_mask[new_obj_mask==idx] = 0 | |
else: | |
new_obj_mask[new_obj_mask==idx] = obj_num | |
obj_num += 1 | |
return new_obj_mask | |
def restart_tracker(self): | |
self.tracker.restart() | |
def seg_acc_bbox(self, origin_frame: np.ndarray, bbox: np.ndarray,): | |
'''' | |
Use bbox-prompt to get mask | |
Parameters: | |
origin_frame: H, W, C | |
bbox: [[x0, y0], [x1, y1]] | |
Return: | |
refined_merged_mask: numpy array (h, w) | |
masked_frame: numpy array (h, w, c) | |
''' | |
# get interactive_mask | |
interactive_mask = self.sam.segment_with_box(origin_frame, bbox)[0] | |
refined_merged_mask = self.add_mask(interactive_mask) | |
# draw mask | |
masked_frame = draw_mask(origin_frame.copy(), refined_merged_mask) | |
# draw bbox | |
masked_frame = cv2.rectangle(masked_frame, bbox[0], bbox[1], (0, 0, 255)) | |
return refined_merged_mask, masked_frame | |
def seg_acc_click(self, origin_frame: np.ndarray, coords: np.ndarray, modes: np.ndarray, multimask=True): | |
''' | |
Use point-prompt to get mask | |
Parameters: | |
origin_frame: H, W, C | |
coords: nd.array [[x, y]] | |
modes: nd.array [[1]] | |
Return: | |
refined_merged_mask: numpy array (h, w) | |
masked_frame: numpy array (h, w, c) | |
''' | |
# get interactive_mask | |
interactive_mask = self.sam.segment_with_click(origin_frame, coords, modes, multimask) | |
refined_merged_mask = self.add_mask(interactive_mask) | |
# draw mask | |
masked_frame = draw_mask(origin_frame.copy(), refined_merged_mask) | |
# draw points | |
# self.everything_labels = np.array(self.everything_labels).astype(np.int64) | |
# self.everything_points = np.array(self.everything_points).astype(np.int64) | |
masked_frame = draw_points(coords, modes, masked_frame) | |
# draw outline | |
masked_frame = draw_outline(interactive_mask, masked_frame) | |
return refined_merged_mask, masked_frame | |
def add_mask(self, interactive_mask: np.ndarray): | |
''' | |
Merge interactive mask with self.origin_merged_mask | |
Parameters: | |
interactive_mask: numpy array (h, w) | |
Return: | |
refined_merged_mask: numpy array (h, w) | |
''' | |
if self.origin_merged_mask is None: | |
self.origin_merged_mask = np.zeros(interactive_mask.shape,dtype=np.uint8) | |
refined_merged_mask = self.origin_merged_mask.copy() | |
refined_merged_mask[interactive_mask > 0] = self.curr_idx | |
return refined_merged_mask | |
def detect_and_seg(self, origin_frame: np.ndarray, grounding_caption, box_threshold, text_threshold, box_size_threshold=1, reset_image=False): | |
''' | |
Using Grounding-DINO to detect object acc Text-prompts | |
Retrun: | |
refined_merged_mask: numpy array (h, w) | |
annotated_frame: numpy array (h, w, 3) | |
''' | |
# backup id and origin-merged-mask | |
bc_id = self.curr_idx | |
bc_mask = self.origin_merged_mask | |
# get annotated_frame and boxes | |
annotated_frame, boxes = self.detector.run_grounding(origin_frame, grounding_caption, box_threshold, text_threshold) | |
for i in range(len(boxes)): | |
bbox = boxes[i] | |
if (bbox[1][0] - bbox[0][0]) * (bbox[1][1] - bbox[0][1]) > annotated_frame.shape[0] * annotated_frame.shape[1] * box_size_threshold: | |
continue | |
interactive_mask = self.sam.segment_with_box(origin_frame, bbox, reset_image)[0] | |
refined_merged_mask = self.add_mask(interactive_mask) | |
self.update_origin_merged_mask(refined_merged_mask) | |
self.curr_idx += 1 | |
# reset origin_mask | |
self.reset_origin_merged_mask(bc_mask, bc_id) | |
return refined_merged_mask, annotated_frame | |
if __name__ == '__main__': | |
from model_args import segtracker_args,sam_args,aot_args | |
Seg_Tracker = SegTracker(segtracker_args, sam_args, aot_args) | |
# ------------------ detect test ---------------------- | |
origin_frame = cv2.imread('/data2/cym/Seg_Tra_any/Segment-and-Track-Anything/debug/point.png') | |
origin_frame = cv2.cvtColor(origin_frame, cv2.COLOR_BGR2RGB) | |
grounding_caption = "swan.water" | |
box_threshold = 0.25 | |
text_threshold = 0.25 | |
predicted_mask, annotated_frame = Seg_Tracker.detect_and_seg(origin_frame, grounding_caption, box_threshold, text_threshold) | |
masked_frame = draw_mask(annotated_frame, predicted_mask) | |
origin_frame = cv2.cvtColor(origin_frame, cv2.COLOR_RGB2BGR) | |
cv2.imwrite('./debug/masked_frame.png', masked_frame) | |
cv2.imwrite('./debug/x.png', annotated_frame) |