Spaces:
Running
Running
Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +20 -35
- .gitignore +14 -0
- .ipynb_checkpoints/demo-checkpoint.ipynb +343 -0
- GroundingDINO/.asset/COCO.png +0 -0
- GroundingDINO/.asset/GD_GLIGEN.png +3 -0
- GroundingDINO/.asset/GD_SD.png +3 -0
- GroundingDINO/.asset/ODinW.png +0 -0
- GroundingDINO/.asset/arch.png +0 -0
- GroundingDINO/.asset/cat_dog.jpeg +0 -0
- GroundingDINO/.asset/cats.png +0 -0
- GroundingDINO/.asset/grounding_dino_logo.png +0 -0
- GroundingDINO/.asset/hero_figure.png +3 -0
- GroundingDINO/.asset/model_explan1.PNG +0 -0
- GroundingDINO/.asset/model_explan2.PNG +0 -0
- GroundingDINO/.gitignore +146 -0
- GroundingDINO/LICENSE +201 -0
- GroundingDINO/README.md +367 -0
- GroundingDINO/demo/create_coco_dataset.py +83 -0
- GroundingDINO/demo/gradio_app.py +125 -0
- GroundingDINO/demo/image_editing_with_groundingdino_gligen.ipynb +0 -0
- GroundingDINO/demo/image_editing_with_groundingdino_stablediffusion.ipynb +0 -0
- GroundingDINO/demo/inference_on_a_image.py +214 -0
- GroundingDINO/demo/test_ap_on_coco.py +233 -0
- GroundingDINO/environment.yaml +248 -0
- GroundingDINO/groundingdino.egg-info/PKG-INFO +209 -0
- GroundingDINO/groundingdino.egg-info/SOURCES.txt +42 -0
- GroundingDINO/groundingdino.egg-info/dependency_links.txt +1 -0
- GroundingDINO/groundingdino.egg-info/requires.txt +10 -0
- GroundingDINO/groundingdino.egg-info/top_level.txt +1 -0
- GroundingDINO/groundingdino/__init__.py +0 -0
- GroundingDINO/groundingdino/__pycache__/__init__.cpython-311.pyc +0 -0
- GroundingDINO/groundingdino/config/GroundingDINO_SwinB_cfg.py +43 -0
- GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py +43 -0
- GroundingDINO/groundingdino/config/__init__.py +0 -0
- GroundingDINO/groundingdino/datasets/__init__.py +0 -0
- GroundingDINO/groundingdino/datasets/__pycache__/__init__.cpython-311.pyc +0 -0
- GroundingDINO/groundingdino/datasets/__pycache__/transforms.cpython-311.pyc +0 -0
- GroundingDINO/groundingdino/datasets/cocogrounding_eval.py +269 -0
- GroundingDINO/groundingdino/datasets/transforms.py +311 -0
- GroundingDINO/groundingdino/models/GroundingDINO/__init__.py +15 -0
- GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/__init__.cpython-311.pyc +0 -0
- GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/bertwarper.cpython-311.pyc +0 -0
- GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/fuse_modules.cpython-311.pyc +0 -0
- GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/groundingdino.cpython-311.pyc +0 -0
- GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/ms_deform_attn.cpython-311.pyc +0 -0
- GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/transformer.cpython-311.pyc +0 -0
- GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/transformer_vanilla.cpython-311.pyc +0 -0
- GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/utils.cpython-311.pyc +0 -0
- GroundingDINO/groundingdino/models/GroundingDINO/backbone/__init__.py +1 -0
- GroundingDINO/groundingdino/models/GroundingDINO/backbone/__pycache__/__init__.cpython-311.pyc +0 -0
.gitattributes
CHANGED
@@ -1,35 +1,20 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
# Auto detect text files and perform LF normalization
|
2 |
+
* text=auto
|
3 |
+
assets/840_iSXIa0hE8Ek.zip filter=lfs diff=lfs merge=lfs -text
|
4 |
+
assets/cars.mp4 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
assets/cell.mp4 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
assets/demo_3x2.gif filter=lfs diff=lfs merge=lfs -text
|
7 |
+
assets/top.gif filter=lfs diff=lfs merge=lfs -text
|
8 |
+
ckpt/groundingdino_swint_ogc.pth filter=lfs diff=lfs merge=lfs -text
|
9 |
+
GroundingDINO/.asset/GD_GLIGEN.png filter=lfs diff=lfs merge=lfs -text
|
10 |
+
GroundingDINO/.asset/GD_SD.png filter=lfs diff=lfs merge=lfs -text
|
11 |
+
GroundingDINO/.asset/hero_figure.png filter=lfs diff=lfs merge=lfs -text
|
12 |
+
GroundingDINO/weights/groundingdino_swint_ogc.pth filter=lfs diff=lfs merge=lfs -text
|
13 |
+
sam/assets/masks1.png filter=lfs diff=lfs merge=lfs -text
|
14 |
+
sam/assets/notebook2.png filter=lfs diff=lfs merge=lfs -text
|
15 |
+
sam/src/groundingdino/.asset/GD_GLIGEN.png filter=lfs diff=lfs merge=lfs -text
|
16 |
+
sam/src/groundingdino/.asset/GD_SD.png filter=lfs diff=lfs merge=lfs -text
|
17 |
+
sam/src/groundingdino/.asset/hero_figure.png filter=lfs diff=lfs merge=lfs -text
|
18 |
+
tutorial/img/click_segment.jpg filter=lfs diff=lfs merge=lfs -text
|
19 |
+
tutorial/img/input_video.jpg filter=lfs diff=lfs merge=lfs -text
|
20 |
+
tutorial/img/start_tracking.jpg filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.gitignore
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.vscode
|
2 |
+
ckpt/*
|
3 |
+
assets/*masks
|
4 |
+
assets/*mp4
|
5 |
+
# assets/*zip
|
6 |
+
assets/*gif
|
7 |
+
*.pyc
|
8 |
+
debug
|
9 |
+
cym_utils
|
10 |
+
/src
|
11 |
+
/tracking_results
|
12 |
+
/aot/results
|
13 |
+
/aot/pretrain_models
|
14 |
+
/aot/datasets
|
.ipynb_checkpoints/demo-checkpoint.ipynb
ADDED
@@ -0,0 +1,343 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"ename": "ModuleNotFoundError",
|
10 |
+
"evalue": "No module named 'groundingdino'",
|
11 |
+
"output_type": "error",
|
12 |
+
"traceback": [
|
13 |
+
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
14 |
+
"\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
|
15 |
+
"Cell \u001b[1;32mIn[1], line 3\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mos\u001b[39;00m\n\u001b[0;32m 2\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mcv2\u001b[39;00m\n\u001b[1;32m----> 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mSegTracker\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m SegTracker\n\u001b[0;32m 4\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mmodel_args\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m aot_args,sam_args,segtracker_args\n\u001b[0;32m 5\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mPIL\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Image\n",
|
16 |
+
"File \u001b[1;32m~\\OneDrive\\Рабочий стол\\records\\SAM\\Segment-and-Track-Anything\\SegTracker.py:8\u001b[0m\n\u001b[0;32m 6\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mnumpy\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mnp\u001b[39;00m\n\u001b[0;32m 7\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtool\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01msegmentor\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Segmentor\n\u001b[1;32m----> 8\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtool\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mdetector\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Detector\n\u001b[0;32m 9\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtool\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mtransfer_tools\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m draw_outline, draw_points\n\u001b[0;32m 10\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mcv2\u001b[39;00m\n",
|
17 |
+
"File \u001b[1;32m~\\OneDrive\\Рабочий стол\\records\\SAM\\Segment-and-Track-Anything\\tool\\detector.py:6\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mcv2\u001b[39;00m\n\u001b[0;32m 4\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mPIL\u001b[39;00m\n\u001b[1;32m----> 6\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mgroundingdino\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mmodels\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m build_model \u001b[38;5;28;01mas\u001b[39;00m build_grounding_dino\n\u001b[0;32m 7\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mgroundingdino\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutil\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mslconfig\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m SLConfig\n\u001b[0;32m 8\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mgroundingdino\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutil\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutils\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m clean_state_dict\n",
|
18 |
+
"\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'groundingdino'"
|
19 |
+
]
|
20 |
+
}
|
21 |
+
],
|
22 |
+
"source": [
|
23 |
+
"import os\n",
|
24 |
+
"import cv2\n",
|
25 |
+
"from SegTracker import SegTracker\n",
|
26 |
+
"from model_args import aot_args,sam_args,segtracker_args\n",
|
27 |
+
"from PIL import Image\n",
|
28 |
+
"from aot_tracker import _palette\n",
|
29 |
+
"import numpy as np\n",
|
30 |
+
"import torch\n",
|
31 |
+
"import imageio\n",
|
32 |
+
"import matplotlib.pyplot as plt\n",
|
33 |
+
"from scipy.ndimage import binary_dilation\n",
|
34 |
+
"import gc\n",
|
35 |
+
"def save_prediction(pred_mask,output_dir,file_name):\n",
|
36 |
+
" save_mask = Image.fromarray(pred_mask.astype(np.uint8))\n",
|
37 |
+
" save_mask = save_mask.convert(mode='P')\n",
|
38 |
+
" save_mask.putpalette(_palette)\n",
|
39 |
+
" save_mask.save(os.path.join(output_dir,file_name))\n",
|
40 |
+
"def colorize_mask(pred_mask):\n",
|
41 |
+
" save_mask = Image.fromarray(pred_mask.astype(np.uint8))\n",
|
42 |
+
" save_mask = save_mask.convert(mode='P')\n",
|
43 |
+
" save_mask.putpalette(_palette)\n",
|
44 |
+
" save_mask = save_mask.convert(mode='RGB')\n",
|
45 |
+
" return np.array(save_mask)\n",
|
46 |
+
"def draw_mask(img, mask, alpha=0.5, id_countour=False):\n",
|
47 |
+
" img_mask = np.zeros_like(img)\n",
|
48 |
+
" img_mask = img\n",
|
49 |
+
" if id_countour:\n",
|
50 |
+
" # very slow ~ 1s per image\n",
|
51 |
+
" obj_ids = np.unique(mask)\n",
|
52 |
+
" obj_ids = obj_ids[obj_ids!=0]\n",
|
53 |
+
"\n",
|
54 |
+
" for id in obj_ids:\n",
|
55 |
+
" # Overlay color on binary mask\n",
|
56 |
+
" if id <= 255:\n",
|
57 |
+
" color = _palette[id*3:id*3+3]\n",
|
58 |
+
" else:\n",
|
59 |
+
" color = [0,0,0]\n",
|
60 |
+
" foreground = img * (1-alpha) + np.ones_like(img) * alpha * np.array(color)\n",
|
61 |
+
" binary_mask = (mask == id)\n",
|
62 |
+
"\n",
|
63 |
+
" # Compose image\n",
|
64 |
+
" img_mask[binary_mask] = foreground[binary_mask]\n",
|
65 |
+
"\n",
|
66 |
+
" countours = binary_dilation(binary_mask,iterations=1) ^ binary_mask\n",
|
67 |
+
" img_mask[countours, :] = 0\n",
|
68 |
+
" else:\n",
|
69 |
+
" binary_mask = (mask!=0)\n",
|
70 |
+
" countours = binary_dilation(binary_mask,iterations=1) ^ binary_mask\n",
|
71 |
+
" foreground = img*(1-alpha)+colorize_mask(mask)*alpha\n",
|
72 |
+
" img_mask[binary_mask] = foreground[binary_mask]\n",
|
73 |
+
" img_mask[countours,:] = 0\n",
|
74 |
+
" \n",
|
75 |
+
" return img_mask.astype(img.dtype)"
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "markdown",
|
80 |
+
"metadata": {},
|
81 |
+
"source": [
|
82 |
+
"### Set parameters for input and output"
|
83 |
+
]
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"cell_type": "code",
|
87 |
+
"execution_count": 2,
|
88 |
+
"metadata": {},
|
89 |
+
"outputs": [],
|
90 |
+
"source": [
|
91 |
+
"video_name = 'cell'\n",
|
92 |
+
"io_args = {\n",
|
93 |
+
" 'input_video': f'./assets/{video_name}.mp4',\n",
|
94 |
+
" 'output_mask_dir': f'./assets/{video_name}_masks', # save pred masks\n",
|
95 |
+
" 'output_video': f'./assets/{video_name}_seg.mp4', # mask+frame vizualization, mp4 or avi, else the same as input video\n",
|
96 |
+
" 'output_gif': f'./assets/{video_name}_seg.gif', # mask visualization\n",
|
97 |
+
"}"
|
98 |
+
]
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"cell_type": "markdown",
|
102 |
+
"metadata": {},
|
103 |
+
"source": [
|
104 |
+
"### Tuning SAM on the First Frame for Good Initialization"
|
105 |
+
]
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"cell_type": "code",
|
109 |
+
"execution_count": null,
|
110 |
+
"metadata": {},
|
111 |
+
"outputs": [],
|
112 |
+
"source": [
|
113 |
+
"# choose good parameters in sam_args based on the first frame segmentation result\n",
|
114 |
+
"# other arguments can be modified in model_args.py\n",
|
115 |
+
"# note the object number limit is 255 by default, which requires < 10GB GPU memory with amp\n",
|
116 |
+
"sam_args['generator_args'] = {\n",
|
117 |
+
" 'points_per_side': 30,\n",
|
118 |
+
" 'pred_iou_thresh': 0.8,\n",
|
119 |
+
" 'stability_score_thresh': 0.9,\n",
|
120 |
+
" 'crop_n_layers': 1,\n",
|
121 |
+
" 'crop_n_points_downscale_factor': 2,\n",
|
122 |
+
" 'min_mask_region_area': 200,\n",
|
123 |
+
" }\n",
|
124 |
+
"cap = cv2.VideoCapture(io_args['input_video'])\n",
|
125 |
+
"frame_idx = 0\n",
|
126 |
+
"segtracker = SegTracker(segtracker_args,sam_args,aot_args)\n",
|
127 |
+
"segtracker.restart_tracker()\n",
|
128 |
+
"with torch.cuda.amp.autocast():\n",
|
129 |
+
" while cap.isOpened():\n",
|
130 |
+
" ret, frame = cap.read()\n",
|
131 |
+
" frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)\n",
|
132 |
+
" pred_mask = segtracker.seg(frame)\n",
|
133 |
+
" torch.cuda.empty_cache()\n",
|
134 |
+
" obj_ids = np.unique(pred_mask)\n",
|
135 |
+
" obj_ids = obj_ids[obj_ids!=0]\n",
|
136 |
+
" print(\"processed frame {}, obj_num {}\".format(frame_idx,len(obj_ids)),end='\\n')\n",
|
137 |
+
" break\n",
|
138 |
+
" cap.release()\n",
|
139 |
+
" init_res = draw_mask(frame,pred_mask,id_countour=False)\n",
|
140 |
+
" plt.figure(figsize=(10,10))\n",
|
141 |
+
" plt.axis('off')\n",
|
142 |
+
" plt.imshow(init_res)\n",
|
143 |
+
" plt.show()\n",
|
144 |
+
" plt.figure(figsize=(10,10))\n",
|
145 |
+
" plt.axis('off')\n",
|
146 |
+
" plt.imshow(colorize_mask(pred_mask))\n",
|
147 |
+
" plt.show()\n",
|
148 |
+
"\n",
|
149 |
+
" del segtracker\n",
|
150 |
+
" torch.cuda.empty_cache()\n",
|
151 |
+
" gc.collect()"
|
152 |
+
]
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"cell_type": "markdown",
|
156 |
+
"metadata": {},
|
157 |
+
"source": [
|
158 |
+
"### Generate Results for the Whole Video"
|
159 |
+
]
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"cell_type": "code",
|
163 |
+
"execution_count": null,
|
164 |
+
"metadata": {},
|
165 |
+
"outputs": [],
|
166 |
+
"source": [
|
167 |
+
"# For every sam_gap frames, we use SAM to find new objects and add them for tracking\n",
|
168 |
+
"# larger sam_gap is faster but may not spot new objects in time\n",
|
169 |
+
"segtracker_args = {\n",
|
170 |
+
" 'sam_gap': 5, # the interval to run sam to segment new objects\n",
|
171 |
+
" 'min_area': 200, # minimal mask area to add a new mask as a new object\n",
|
172 |
+
" 'max_obj_num': 255, # maximal object number to track in a video\n",
|
173 |
+
" 'min_new_obj_iou': 0.8, # the area of a new object in the background should > 80% \n",
|
174 |
+
"}\n",
|
175 |
+
"\n",
|
176 |
+
"# source video to segment\n",
|
177 |
+
"cap = cv2.VideoCapture(io_args['input_video'])\n",
|
178 |
+
"fps = cap.get(cv2.CAP_PROP_FPS)\n",
|
179 |
+
"# output masks\n",
|
180 |
+
"output_dir = io_args['output_mask_dir']\n",
|
181 |
+
"if not os.path.exists(output_dir):\n",
|
182 |
+
" os.makedirs(output_dir)\n",
|
183 |
+
"pred_list = []\n",
|
184 |
+
"masked_pred_list = []\n",
|
185 |
+
"\n",
|
186 |
+
"torch.cuda.empty_cache()\n",
|
187 |
+
"gc.collect()\n",
|
188 |
+
"sam_gap = segtracker_args['sam_gap']\n",
|
189 |
+
"frame_idx = 0\n",
|
190 |
+
"segtracker = SegTracker(segtracker_args,sam_args,aot_args)\n",
|
191 |
+
"segtracker.restart_tracker()\n",
|
192 |
+
"\n",
|
193 |
+
"with torch.cuda.amp.autocast():\n",
|
194 |
+
" while cap.isOpened():\n",
|
195 |
+
" ret, frame = cap.read()\n",
|
196 |
+
" if not ret:\n",
|
197 |
+
" break\n",
|
198 |
+
" frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)\n",
|
199 |
+
" if frame_idx == 0:\n",
|
200 |
+
" pred_mask = segtracker.seg(frame)\n",
|
201 |
+
" torch.cuda.empty_cache()\n",
|
202 |
+
" gc.collect()\n",
|
203 |
+
" segtracker.add_reference(frame, pred_mask)\n",
|
204 |
+
" elif (frame_idx % sam_gap) == 0:\n",
|
205 |
+
" seg_mask = segtracker.seg(frame)\n",
|
206 |
+
" torch.cuda.empty_cache()\n",
|
207 |
+
" gc.collect()\n",
|
208 |
+
" track_mask = segtracker.track(frame)\n",
|
209 |
+
" # find new objects, and update tracker with new objects\n",
|
210 |
+
" new_obj_mask = segtracker.find_new_objs(track_mask,seg_mask)\n",
|
211 |
+
" save_prediction(new_obj_mask,output_dir,str(frame_idx)+'_new.png')\n",
|
212 |
+
" pred_mask = track_mask + new_obj_mask\n",
|
213 |
+
" # segtracker.restart_tracker()\n",
|
214 |
+
" segtracker.add_reference(frame, pred_mask)\n",
|
215 |
+
" else:\n",
|
216 |
+
" pred_mask = segtracker.track(frame,update_memory=True)\n",
|
217 |
+
" torch.cuda.empty_cache()\n",
|
218 |
+
" gc.collect()\n",
|
219 |
+
" save_prediction(pred_mask,output_dir,str(frame_idx)+'.png')\n",
|
220 |
+
" # masked_frame = draw_mask(frame,pred_mask)\n",
|
221 |
+
" # masked_pred_list.append(masked_frame)\n",
|
222 |
+
" # plt.imshow(masked_frame)\n",
|
223 |
+
" # plt.show() \n",
|
224 |
+
" \n",
|
225 |
+
" pred_list.append(pred_mask)\n",
|
226 |
+
" \n",
|
227 |
+
" \n",
|
228 |
+
" print(\"processed frame {}, obj_num {}\".format(frame_idx,segtracker.get_obj_num()),end='\\r')\n",
|
229 |
+
" frame_idx += 1\n",
|
230 |
+
" cap.release()\n",
|
231 |
+
" print('\\nfinished')"
|
232 |
+
]
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"cell_type": "markdown",
|
236 |
+
"metadata": {},
|
237 |
+
"source": [
|
238 |
+
"### Save results for visualization"
|
239 |
+
]
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"cell_type": "code",
|
243 |
+
"execution_count": null,
|
244 |
+
"metadata": {},
|
245 |
+
"outputs": [],
|
246 |
+
"source": [
|
247 |
+
"# draw pred mask on frame and save as a video\n",
|
248 |
+
"cap = cv2.VideoCapture(io_args['input_video'])\n",
|
249 |
+
"fps = cap.get(cv2.CAP_PROP_FPS)\n",
|
250 |
+
"width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))\n",
|
251 |
+
"height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))\n",
|
252 |
+
"num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))\n",
|
253 |
+
"\n",
|
254 |
+
"if io_args['input_video'][-3:]=='mp4':\n",
|
255 |
+
" fourcc = cv2.VideoWriter_fourcc(*\"mp4v\")\n",
|
256 |
+
"elif io_args['input_video'][-3:] == 'avi':\n",
|
257 |
+
" fourcc = cv2.VideoWriter_fourcc(*\"MJPG\")\n",
|
258 |
+
" # fourcc = cv2.VideoWriter_fourcc(*\"XVID\")\n",
|
259 |
+
"else:\n",
|
260 |
+
" fourcc = int(cap.get(cv2.CAP_PROP_FOURCC))\n",
|
261 |
+
"out = cv2.VideoWriter(io_args['output_video'], fourcc, fps, (width, height))\n",
|
262 |
+
"\n",
|
263 |
+
"frame_idx = 0\n",
|
264 |
+
"while cap.isOpened():\n",
|
265 |
+
" ret, frame = cap.read()\n",
|
266 |
+
" if not ret:\n",
|
267 |
+
" break\n",
|
268 |
+
" frame = cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)\n",
|
269 |
+
" pred_mask = pred_list[frame_idx]\n",
|
270 |
+
" masked_frame = draw_mask(frame,pred_mask)\n",
|
271 |
+
" # masked_frame = masked_pred_list[frame_idx]\n",
|
272 |
+
" masked_frame = cv2.cvtColor(masked_frame,cv2.COLOR_RGB2BGR)\n",
|
273 |
+
" out.write(masked_frame)\n",
|
274 |
+
" print('frame {} writed'.format(frame_idx),end='\\r')\n",
|
275 |
+
" frame_idx += 1\n",
|
276 |
+
"out.release()\n",
|
277 |
+
"cap.release()\n",
|
278 |
+
"print(\"\\n{} saved\".format(io_args['output_video']))\n",
|
279 |
+
"print('\\nfinished')"
|
280 |
+
]
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"cell_type": "code",
|
284 |
+
"execution_count": null,
|
285 |
+
"metadata": {},
|
286 |
+
"outputs": [],
|
287 |
+
"source": [
|
288 |
+
"# save colorized masks as a gif\n",
|
289 |
+
"imageio.mimsave(io_args['output_gif'],pred_list,fps=fps)\n",
|
290 |
+
"print(\"{} saved\".format(io_args['output_gif']))"
|
291 |
+
]
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"cell_type": "code",
|
295 |
+
"execution_count": 6,
|
296 |
+
"metadata": {},
|
297 |
+
"outputs": [
|
298 |
+
{
|
299 |
+
"data": {
|
300 |
+
"text/plain": [
|
301 |
+
"301"
|
302 |
+
]
|
303 |
+
},
|
304 |
+
"execution_count": 6,
|
305 |
+
"metadata": {},
|
306 |
+
"output_type": "execute_result"
|
307 |
+
}
|
308 |
+
],
|
309 |
+
"source": [
|
310 |
+
"# manually release memory (after cuda out of memory)\n",
|
311 |
+
"del segtracker\n",
|
312 |
+
"torch.cuda.empty_cache()\n",
|
313 |
+
"gc.collect()"
|
314 |
+
]
|
315 |
+
}
|
316 |
+
],
|
317 |
+
"metadata": {
|
318 |
+
"kernelspec": {
|
319 |
+
"display_name": "Python 3 (ipykernel)",
|
320 |
+
"language": "python",
|
321 |
+
"name": "python3"
|
322 |
+
},
|
323 |
+
"language_info": {
|
324 |
+
"codemirror_mode": {
|
325 |
+
"name": "ipython",
|
326 |
+
"version": 3
|
327 |
+
},
|
328 |
+
"file_extension": ".py",
|
329 |
+
"mimetype": "text/x-python",
|
330 |
+
"name": "python",
|
331 |
+
"nbconvert_exporter": "python",
|
332 |
+
"pygments_lexer": "ipython3",
|
333 |
+
"version": "3.11.1"
|
334 |
+
},
|
335 |
+
"vscode": {
|
336 |
+
"interpreter": {
|
337 |
+
"hash": "536611da043600e50719c9460971b5220bad26cd4a87e5994bfd4c9e9e5e7fb0"
|
338 |
+
}
|
339 |
+
}
|
340 |
+
},
|
341 |
+
"nbformat": 4,
|
342 |
+
"nbformat_minor": 2
|
343 |
+
}
|
GroundingDINO/.asset/COCO.png
ADDED
GroundingDINO/.asset/GD_GLIGEN.png
ADDED
Git LFS Details
|
GroundingDINO/.asset/GD_SD.png
ADDED
Git LFS Details
|
GroundingDINO/.asset/ODinW.png
ADDED
GroundingDINO/.asset/arch.png
ADDED
GroundingDINO/.asset/cat_dog.jpeg
ADDED
GroundingDINO/.asset/cats.png
ADDED
GroundingDINO/.asset/grounding_dino_logo.png
ADDED
GroundingDINO/.asset/hero_figure.png
ADDED
Git LFS Details
|
GroundingDINO/.asset/model_explan1.PNG
ADDED
GroundingDINO/.asset/model_explan2.PNG
ADDED
GroundingDINO/.gitignore
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# IDE
|
2 |
+
.idea/
|
3 |
+
.vscode/
|
4 |
+
|
5 |
+
# Byte-compiled / optimized / DLL files
|
6 |
+
__pycache__/
|
7 |
+
*.py[cod]
|
8 |
+
*$py.class
|
9 |
+
|
10 |
+
# C extensions
|
11 |
+
*.so
|
12 |
+
|
13 |
+
# Distribution / packaging
|
14 |
+
.Python
|
15 |
+
build/
|
16 |
+
develop-eggs/
|
17 |
+
dist/
|
18 |
+
downloads/
|
19 |
+
eggs/
|
20 |
+
.eggs/
|
21 |
+
lib/
|
22 |
+
lib64/
|
23 |
+
parts/
|
24 |
+
sdist/
|
25 |
+
var/
|
26 |
+
wheels/
|
27 |
+
pip-wheel-metadata/
|
28 |
+
share/python-wheels/
|
29 |
+
*.egg-info/
|
30 |
+
.installed.cfg
|
31 |
+
*.egg
|
32 |
+
MANIFEST
|
33 |
+
|
34 |
+
# PyInstaller
|
35 |
+
# Usually these files are written by a python script from a template
|
36 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
37 |
+
*.manifest
|
38 |
+
*.spec
|
39 |
+
|
40 |
+
# Installer logs
|
41 |
+
pip-log.txt
|
42 |
+
pip-delete-this-directory.txt
|
43 |
+
|
44 |
+
# Unit test / coverage reports
|
45 |
+
htmlcov/
|
46 |
+
.tox/
|
47 |
+
.nox/
|
48 |
+
.coverage
|
49 |
+
.coverage.*
|
50 |
+
.cache
|
51 |
+
nosetests.xml
|
52 |
+
coverage.xml
|
53 |
+
*.cover
|
54 |
+
*.py,cover
|
55 |
+
.hypothesis/
|
56 |
+
.pytest_cache/
|
57 |
+
|
58 |
+
# Translations
|
59 |
+
*.mo
|
60 |
+
*.pot
|
61 |
+
|
62 |
+
# Django stuff:
|
63 |
+
*.log
|
64 |
+
local_settings.py
|
65 |
+
db.sqlite3
|
66 |
+
db.sqlite3-journal
|
67 |
+
|
68 |
+
# Flask stuff:
|
69 |
+
instance/
|
70 |
+
.webassets-cache
|
71 |
+
|
72 |
+
# Scrapy stuff:
|
73 |
+
.scrapy
|
74 |
+
|
75 |
+
# Sphinx documentation
|
76 |
+
docs/_build/
|
77 |
+
|
78 |
+
# PyBuilder
|
79 |
+
target/
|
80 |
+
|
81 |
+
# Jupyter Notebook
|
82 |
+
.ipynb_checkpoints
|
83 |
+
|
84 |
+
# IPython
|
85 |
+
profile_default/
|
86 |
+
ipython_config.py
|
87 |
+
|
88 |
+
# pyenv
|
89 |
+
.python-version
|
90 |
+
|
91 |
+
# pipenv
|
92 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
93 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
94 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
95 |
+
# install all needed dependencies.
|
96 |
+
#Pipfile.lock
|
97 |
+
|
98 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
99 |
+
__pypackages__/
|
100 |
+
|
101 |
+
# Celery stuff
|
102 |
+
celerybeat-schedule
|
103 |
+
celerybeat.pid
|
104 |
+
|
105 |
+
# SageMath parsed files
|
106 |
+
*.sage.py
|
107 |
+
|
108 |
+
# Environments
|
109 |
+
.env
|
110 |
+
.venv
|
111 |
+
env/
|
112 |
+
venv/
|
113 |
+
ENV/
|
114 |
+
env.bak/
|
115 |
+
venv.bak/
|
116 |
+
|
117 |
+
# Spyder project settings
|
118 |
+
.spyderproject
|
119 |
+
.spyproject
|
120 |
+
|
121 |
+
# Rope project settings
|
122 |
+
.ropeproject
|
123 |
+
|
124 |
+
# mkdocs documentation
|
125 |
+
/site
|
126 |
+
|
127 |
+
# mypy
|
128 |
+
.mypy_cache/
|
129 |
+
.dmypy.json
|
130 |
+
dmypy.json
|
131 |
+
|
132 |
+
# Pyre type checker
|
133 |
+
.pyre/
|
134 |
+
|
135 |
+
# vscode
|
136 |
+
.vscode/
|
137 |
+
output/
|
138 |
+
outputs/
|
139 |
+
subs/
|
140 |
+
logs/
|
141 |
+
|
142 |
+
grounding/config/configs
|
143 |
+
grounding/version.py
|
144 |
+
|
145 |
+
vis/
|
146 |
+
tmp/
|
GroundingDINO/LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright 2023 - present, IDEA Research.
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
GroundingDINO/README.md
ADDED
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<div align="center">
|
2 |
+
<img src="./.asset/grounding_dino_logo.png" width="30%">
|
3 |
+
</div>
|
4 |
+
|
5 |
+
# :sauropod: Grounding DINO
|
6 |
+
|
7 |
+
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/zero-shot-object-detection-on-mscoco)](https://paperswithcode.com/sota/zero-shot-object-detection-on-mscoco?p=grounding-dino-marrying-dino-with-grounded) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/zero-shot-object-detection-on-odinw)](https://paperswithcode.com/sota/zero-shot-object-detection-on-odinw?p=grounding-dino-marrying-dino-with-grounded) \
|
8 |
+
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/object-detection-on-coco-minival)](https://paperswithcode.com/sota/object-detection-on-coco-minival?p=grounding-dino-marrying-dino-with-grounded) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/object-detection-on-coco)](https://paperswithcode.com/sota/object-detection-on-coco?p=grounding-dino-marrying-dino-with-grounded)
|
9 |
+
|
10 |
+
|
11 |
+
**[IDEA-CVR, IDEA-Research](https://github.com/IDEA-Research)**
|
12 |
+
|
13 |
+
[Shilong Liu](http://www.lsl.zone/), [Zhaoyang Zeng](https://scholar.google.com/citations?user=U_cvvUwAAAAJ&hl=zh-CN&oi=ao), [Tianhe Ren](https://rentainhe.github.io/), [Feng Li](https://scholar.google.com/citations?user=ybRe9GcAAAAJ&hl=zh-CN), [Hao Zhang](https://scholar.google.com/citations?user=B8hPxMQAAAAJ&hl=zh-CN), [Jie Yang](https://github.com/yangjie-cv), [Chunyuan Li](https://scholar.google.com/citations?user=Zd7WmXUAAAAJ&hl=zh-CN&oi=ao), [Jianwei Yang](https://jwyang.github.io/), [Hang Su](https://scholar.google.com/citations?hl=en&user=dxN1_X0AAAAJ&view_op=list_works&sortby=pubdate), [Jun Zhu](https://scholar.google.com/citations?hl=en&user=axsP38wAAAAJ), [Lei Zhang](https://www.leizhang.org/)<sup>:email:</sup>.
|
14 |
+
|
15 |
+
|
16 |
+
[[`Paper`](https://arxiv.org/abs/2303.05499)] [[`Demo`](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo)] [[`BibTex`](#black_nib-citation)]
|
17 |
+
|
18 |
+
|
19 |
+
PyTorch implementation and pretrained models for Grounding DINO. For details, see the paper **[Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499)**.
|
20 |
+
|
21 |
+
## :sun_with_face: Helpful Tutorial
|
22 |
+
|
23 |
+
- :grapes: [[Read our arXiv Paper](https://arxiv.org/abs/2303.05499)]
|
24 |
+
- :apple: [[Watch our simple introduction video on YouTube](https://youtu.be/wxWDt5UiwY8)]
|
25 |
+
- :blossom: [[Try the Colab Demo](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/zero-shot-object-detection-with-grounding-dino.ipynb)]
|
26 |
+
- :sunflower: [[Try our Official Huggingface Demo](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo)]
|
27 |
+
- :maple_leaf: [[Watch the Step by Step Tutorial about GroundingDINO by Roboflow AI](https://youtu.be/cMa77r3YrDk)]
|
28 |
+
- :mushroom: [[GroundingDINO: Automated Dataset Annotation and Evaluation by Roboflow AI](https://youtu.be/C4NqaRBz_Kw)]
|
29 |
+
- :hibiscus: [[Accelerate Image Annotation with SAM and GroundingDINO by Roboflow AI](https://youtu.be/oEQYStnF2l8)]
|
30 |
+
- :white_flower: [[Autodistill: Train YOLOv8 with ZERO Annotations based on Grounding-DINO and Grounded-SAM by Roboflow AI](https://github.com/autodistill/autodistill)]
|
31 |
+
|
32 |
+
<!-- Grounding DINO Methods |
|
33 |
+
[![arXiv](https://img.shields.io/badge/arXiv-2303.05499-b31b1b.svg)](https://arxiv.org/abs/2303.05499)
|
34 |
+
[![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/wxWDt5UiwY8) -->
|
35 |
+
|
36 |
+
<!-- Grounding DINO Demos |
|
37 |
+
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/zero-shot-object-detection-with-grounding-dino.ipynb) -->
|
38 |
+
<!-- [![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/cMa77r3YrDk)
|
39 |
+
[![HuggingFace space](https://img.shields.io/badge/🤗-HuggingFace%20Space-cyan.svg)](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo)
|
40 |
+
[![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/oEQYStnF2l8)
|
41 |
+
[![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/C4NqaRBz_Kw) -->
|
42 |
+
|
43 |
+
## :sparkles: Highlight Projects
|
44 |
+
|
45 |
+
- [Semantic-SAM: a universal image segmentation model to enable segment and recognize anything at any desired granularity.](https://github.com/UX-Decoder/Semantic-SAM),
|
46 |
+
- [DetGPT: Detect What You Need via Reasoning](https://github.com/OptimalScale/DetGPT)
|
47 |
+
- [Grounded-SAM: Marrying Grounding DINO with Segment Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything)
|
48 |
+
- [Grounding DINO with Stable Diffusion](demo/image_editing_with_groundingdino_stablediffusion.ipynb)
|
49 |
+
- [Grounding DINO with GLIGEN for Controllable Image Editing](demo/image_editing_with_groundingdino_gligen.ipynb)
|
50 |
+
- [OpenSeeD: A Simple and Strong Openset Segmentation Model](https://github.com/IDEA-Research/OpenSeeD)
|
51 |
+
- [SEEM: Segment Everything Everywhere All at Once](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once)
|
52 |
+
- [X-GPT: Conversational Visual Agent supported by X-Decoder](https://github.com/microsoft/X-Decoder/tree/xgpt)
|
53 |
+
- [GLIGEN: Open-Set Grounded Text-to-Image Generation](https://github.com/gligen/GLIGEN)
|
54 |
+
- [LLaVA: Large Language and Vision Assistant](https://github.com/haotian-liu/LLaVA)
|
55 |
+
|
56 |
+
<!-- Extensions | [Grounding DINO with Segment Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything); [Grounding DINO with Stable Diffusion](demo/image_editing_with_groundingdino_stablediffusion.ipynb); [Grounding DINO with GLIGEN](demo/image_editing_with_groundingdino_gligen.ipynb) -->
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
<!-- Official PyTorch implementation of [Grounding DINO](https://arxiv.org/abs/2303.05499), a stronger open-set object detector. Code is available now! -->
|
61 |
+
|
62 |
+
|
63 |
+
## :bulb: Highlight
|
64 |
+
|
65 |
+
- **Open-Set Detection.** Detect **everything** with language!
|
66 |
+
- **High Performancce.** COCO zero-shot **52.5 AP** (training without COCO data!). COCO fine-tune **63.0 AP**.
|
67 |
+
- **Flexible.** Collaboration with Stable Diffusion for Image Editting.
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
## :fire: News
|
73 |
+
- **`2023/07/18`**: We release [Semantic-SAM](https://github.com/UX-Decoder/Semantic-SAM), a universal image segmentation model to enable segment and recognize anything at any desired granularity. **Code** and **checkpoint** are available!
|
74 |
+
- **`2023/06/17`**: We provide an example to evaluate Grounding DINO on COCO zero-shot performance.
|
75 |
+
- **`2023/04/15`**: Refer to [CV in the Wild Readings](https://github.com/Computer-Vision-in-the-Wild/CVinW_Readings) for those who are interested in open-set recognition!
|
76 |
+
- **`2023/04/08`**: We release [demos](demo/image_editing_with_groundingdino_gligen.ipynb) to combine [Grounding DINO](https://arxiv.org/abs/2303.05499) with [GLIGEN](https://github.com/gligen/GLIGEN) for more controllable image editings.
|
77 |
+
- **`2023/04/08`**: We release [demos](demo/image_editing_with_groundingdino_stablediffusion.ipynb) to combine [Grounding DINO](https://arxiv.org/abs/2303.05499) with [Stable Diffusion](https://github.com/Stability-AI/StableDiffusion) for image editings.
|
78 |
+
- **`2023/04/06`**: We build a new demo by marrying GroundingDINO with [Segment-Anything](https://github.com/facebookresearch/segment-anything) named **[Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything)** aims to support segmentation in GroundingDINO.
|
79 |
+
- **`2023/03/28`**: A YouTube [video](https://youtu.be/cMa77r3YrDk) about Grounding DINO and basic object detection prompt engineering. [[SkalskiP](https://github.com/SkalskiP)]
|
80 |
+
- **`2023/03/28`**: Add a [demo](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo) on Hugging Face Space!
|
81 |
+
- **`2023/03/27`**: Support CPU-only mode. Now the model can run on machines without GPUs.
|
82 |
+
- **`2023/03/25`**: A [demo](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/zero-shot-object-detection-with-grounding-dino.ipynb) for Grounding DINO is available at Colab. [[SkalskiP](https://github.com/SkalskiP)]
|
83 |
+
- **`2023/03/22`**: Code is available Now!
|
84 |
+
|
85 |
+
<details open>
|
86 |
+
<summary><font size="4">
|
87 |
+
Description
|
88 |
+
</font></summary>
|
89 |
+
<a href="https://arxiv.org/abs/2303.05499">Paper</a> introduction.
|
90 |
+
<img src=".asset/hero_figure.png" alt="ODinW" width="100%">
|
91 |
+
Marrying <a href="https://github.com/IDEA-Research/GroundingDINO">Grounding DINO</a> and <a href="https://github.com/gligen/GLIGEN">GLIGEN</a>
|
92 |
+
<img src="https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/GD_GLIGEN.png" alt="gd_gligen" width="100%">
|
93 |
+
</details>
|
94 |
+
|
95 |
+
## :star: Explanations/Tips for Grounding DINO Inputs and Outputs
|
96 |
+
- Grounding DINO accepts an `(image, text)` pair as inputs.
|
97 |
+
- It outputs `900` (by default) object boxes. Each box has similarity scores across all input words. (as shown in Figures below.)
|
98 |
+
- We defaultly choose the boxes whose highest similarities are higher than a `box_threshold`.
|
99 |
+
- We extract the words whose similarities are higher than the `text_threshold` as predicted labels.
|
100 |
+
- If you want to obtain objects of specific phrases, like the `dogs` in the sentence `two dogs with a stick.`, you can select the boxes with highest text similarities with `dogs` as final outputs.
|
101 |
+
- Note that each word can be split to **more than one** tokens with different tokenlizers. The number of words in a sentence may not equal to the number of text tokens.
|
102 |
+
- We suggest separating different category names with `.` for Grounding DINO.
|
103 |
+
![model_explain1](.asset/model_explan1.PNG)
|
104 |
+
![model_explain2](.asset/model_explan2.PNG)
|
105 |
+
|
106 |
+
## :label: TODO
|
107 |
+
|
108 |
+
- [x] Release inference code and demo.
|
109 |
+
- [x] Release checkpoints.
|
110 |
+
- [x] Grounding DINO with Stable Diffusion and GLIGEN demos.
|
111 |
+
- [ ] Release training codes.
|
112 |
+
|
113 |
+
## :hammer_and_wrench: Install
|
114 |
+
|
115 |
+
**Note:**
|
116 |
+
|
117 |
+
0. If you have a CUDA environment, please make sure the environment variable `CUDA_HOME` is set. It will be compiled under CPU-only mode if no CUDA available.
|
118 |
+
|
119 |
+
Please make sure following the installation steps strictly, otherwise the program may produce:
|
120 |
+
```bash
|
121 |
+
NameError: name '_C' is not defined
|
122 |
+
```
|
123 |
+
|
124 |
+
If this happened, please reinstalled the groundingDINO by reclone the git and do all the installation steps again.
|
125 |
+
|
126 |
+
#### how to check cuda:
|
127 |
+
```bash
|
128 |
+
echo $CUDA_HOME
|
129 |
+
```
|
130 |
+
If it print nothing, then it means you haven't set up the path/
|
131 |
+
|
132 |
+
Run this so the environment variable will be set under current shell.
|
133 |
+
```bash
|
134 |
+
export CUDA_HOME=/path/to/cuda-11.3
|
135 |
+
```
|
136 |
+
|
137 |
+
Notice the version of cuda should be aligned with your CUDA runtime, for there might exists multiple cuda at the same time.
|
138 |
+
|
139 |
+
If you want to set the CUDA_HOME permanently, store it using:
|
140 |
+
|
141 |
+
```bash
|
142 |
+
echo 'export CUDA_HOME=/path/to/cuda' >> ~/.bashrc
|
143 |
+
```
|
144 |
+
after that, source the bashrc file and check CUDA_HOME:
|
145 |
+
```bash
|
146 |
+
source ~/.bashrc
|
147 |
+
echo $CUDA_HOME
|
148 |
+
```
|
149 |
+
|
150 |
+
In this example, /path/to/cuda-11.3 should be replaced with the path where your CUDA toolkit is installed. You can find this by typing **which nvcc** in your terminal:
|
151 |
+
|
152 |
+
For instance,
|
153 |
+
if the output is /usr/local/cuda/bin/nvcc, then:
|
154 |
+
```bash
|
155 |
+
export CUDA_HOME=/usr/local/cuda
|
156 |
+
```
|
157 |
+
**Installation:**
|
158 |
+
|
159 |
+
1.Clone the GroundingDINO repository from GitHub.
|
160 |
+
|
161 |
+
```bash
|
162 |
+
git clone https://github.com/IDEA-Research/GroundingDINO.git
|
163 |
+
```
|
164 |
+
|
165 |
+
2. Change the current directory to the GroundingDINO folder.
|
166 |
+
|
167 |
+
```bash
|
168 |
+
cd GroundingDINO/
|
169 |
+
```
|
170 |
+
|
171 |
+
3. Install the required dependencies in the current directory.
|
172 |
+
|
173 |
+
```bash
|
174 |
+
pip install -e .
|
175 |
+
```
|
176 |
+
|
177 |
+
4. Download pre-trained model weights.
|
178 |
+
|
179 |
+
```bash
|
180 |
+
mkdir weights
|
181 |
+
cd weights
|
182 |
+
wget -q https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth
|
183 |
+
cd ..
|
184 |
+
```
|
185 |
+
|
186 |
+
## :arrow_forward: Demo
|
187 |
+
Check your GPU ID (only if you're using a GPU)
|
188 |
+
|
189 |
+
```bash
|
190 |
+
nvidia-smi
|
191 |
+
```
|
192 |
+
Replace `{GPU ID}`, `image_you_want_to_detect.jpg`, and `"dir you want to save the output"` with appropriate values in the following command
|
193 |
+
```bash
|
194 |
+
CUDA_VISIBLE_DEVICES={GPU ID} python demo/inference_on_a_image.py \
|
195 |
+
-c groundingdino/config/GroundingDINO_SwinT_OGC.py \
|
196 |
+
-p weights/groundingdino_swint_ogc.pth \
|
197 |
+
-i image_you_want_to_detect.jpg \
|
198 |
+
-o "dir you want to save the output" \
|
199 |
+
-t "chair"
|
200 |
+
[--cpu-only] # open it for cpu mode
|
201 |
+
```
|
202 |
+
|
203 |
+
If you would like to specify the phrases to detect, here is a demo:
|
204 |
+
```bash
|
205 |
+
CUDA_VISIBLE_DEVICES={GPU ID} python demo/inference_on_a_image.py \
|
206 |
+
-c groundingdino/config/GroundingDINO_SwinT_OGC.py \
|
207 |
+
-p ./groundingdino_swint_ogc.pth \
|
208 |
+
-i .asset/cat_dog.jpeg \
|
209 |
+
-o logs/1111 \
|
210 |
+
-t "There is a cat and a dog in the image ." \
|
211 |
+
--token_spans "[[[9, 10], [11, 14]], [[19, 20], [21, 24]]]"
|
212 |
+
[--cpu-only] # open it for cpu mode
|
213 |
+
```
|
214 |
+
The token_spans specify the start and end positions of a phrases. For example, the first phrase is `[[9, 10], [11, 14]]`. `"There is a cat and a dog in the image ."[9:10] = 'a'`, `"There is a cat and a dog in the image ."[11:14] = 'cat'`. Hence it refers to the phrase `a cat` . Similarly, the `[[19, 20], [21, 24]]` refers to the phrase `a dog`.
|
215 |
+
|
216 |
+
See the `demo/inference_on_a_image.py` for more details.
|
217 |
+
|
218 |
+
**Running with Python:**
|
219 |
+
|
220 |
+
```python
|
221 |
+
from groundingdino.util.inference import load_model, load_image, predict, annotate
|
222 |
+
import cv2
|
223 |
+
|
224 |
+
model = load_model("groundingdino/config/GroundingDINO_SwinT_OGC.py", "weights/groundingdino_swint_ogc.pth")
|
225 |
+
IMAGE_PATH = "weights/dog-3.jpeg"
|
226 |
+
TEXT_PROMPT = "chair . person . dog ."
|
227 |
+
BOX_TRESHOLD = 0.35
|
228 |
+
TEXT_TRESHOLD = 0.25
|
229 |
+
|
230 |
+
image_source, image = load_image(IMAGE_PATH)
|
231 |
+
|
232 |
+
boxes, logits, phrases = predict(
|
233 |
+
model=model,
|
234 |
+
image=image,
|
235 |
+
caption=TEXT_PROMPT,
|
236 |
+
box_threshold=BOX_TRESHOLD,
|
237 |
+
text_threshold=TEXT_TRESHOLD
|
238 |
+
)
|
239 |
+
|
240 |
+
annotated_frame = annotate(image_source=image_source, boxes=boxes, logits=logits, phrases=phrases)
|
241 |
+
cv2.imwrite("annotated_image.jpg", annotated_frame)
|
242 |
+
```
|
243 |
+
**Web UI**
|
244 |
+
|
245 |
+
We also provide a demo code to integrate Grounding DINO with Gradio Web UI. See the file `demo/gradio_app.py` for more details.
|
246 |
+
|
247 |
+
**Notebooks**
|
248 |
+
|
249 |
+
- We release [demos](demo/image_editing_with_groundingdino_gligen.ipynb) to combine [Grounding DINO](https://arxiv.org/abs/2303.05499) with [GLIGEN](https://github.com/gligen/GLIGEN) for more controllable image editings.
|
250 |
+
- We release [demos](demo/image_editing_with_groundingdino_stablediffusion.ipynb) to combine [Grounding DINO](https://arxiv.org/abs/2303.05499) with [Stable Diffusion](https://github.com/Stability-AI/StableDiffusion) for image editings.
|
251 |
+
|
252 |
+
## COCO Zero-shot Evaluations
|
253 |
+
|
254 |
+
We provide an example to evaluate Grounding DINO zero-shot performance on COCO. The results should be **48.5**.
|
255 |
+
|
256 |
+
```bash
|
257 |
+
CUDA_VISIBLE_DEVICES=0 \
|
258 |
+
python demo/test_ap_on_coco.py \
|
259 |
+
-c groundingdino/config/GroundingDINO_SwinT_OGC.py \
|
260 |
+
-p weights/groundingdino_swint_ogc.pth \
|
261 |
+
--anno_path /path/to/annoataions/ie/instances_val2017.json \
|
262 |
+
--image_dir /path/to/imagedir/ie/val2017
|
263 |
+
```
|
264 |
+
|
265 |
+
|
266 |
+
## :luggage: Checkpoints
|
267 |
+
|
268 |
+
<!-- insert a table -->
|
269 |
+
<table>
|
270 |
+
<thead>
|
271 |
+
<tr style="text-align: right;">
|
272 |
+
<th></th>
|
273 |
+
<th>name</th>
|
274 |
+
<th>backbone</th>
|
275 |
+
<th>Data</th>
|
276 |
+
<th>box AP on COCO</th>
|
277 |
+
<th>Checkpoint</th>
|
278 |
+
<th>Config</th>
|
279 |
+
</tr>
|
280 |
+
</thead>
|
281 |
+
<tbody>
|
282 |
+
<tr>
|
283 |
+
<th>1</th>
|
284 |
+
<td>GroundingDINO-T</td>
|
285 |
+
<td>Swin-T</td>
|
286 |
+
<td>O365,GoldG,Cap4M</td>
|
287 |
+
<td>48.4 (zero-shot) / 57.2 (fine-tune)</td>
|
288 |
+
<td><a href="https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth">GitHub link</a> | <a href="https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth">HF link</a></td>
|
289 |
+
<td><a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/groundingdino/config/GroundingDINO_SwinT_OGC.py">link</a></td>
|
290 |
+
</tr>
|
291 |
+
<tr>
|
292 |
+
<th>2</th>
|
293 |
+
<td>GroundingDINO-B</td>
|
294 |
+
<td>Swin-B</td>
|
295 |
+
<td>COCO,O365,GoldG,Cap4M,OpenImage,ODinW-35,RefCOCO</td>
|
296 |
+
<td>56.7 </td>
|
297 |
+
<td><a href="https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha2/groundingdino_swinb_cogcoor.pth">GitHub link</a> | <a href="https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swinb_cogcoor.pth">HF link</a>
|
298 |
+
<td><a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/groundingdino/config/GroundingDINO_SwinB.cfg.py">link</a></td>
|
299 |
+
</tr>
|
300 |
+
</tbody>
|
301 |
+
</table>
|
302 |
+
|
303 |
+
## :medal_military: Results
|
304 |
+
|
305 |
+
<details open>
|
306 |
+
<summary><font size="4">
|
307 |
+
COCO Object Detection Results
|
308 |
+
</font></summary>
|
309 |
+
<img src=".asset/COCO.png" alt="COCO" width="100%">
|
310 |
+
</details>
|
311 |
+
|
312 |
+
<details open>
|
313 |
+
<summary><font size="4">
|
314 |
+
ODinW Object Detection Results
|
315 |
+
</font></summary>
|
316 |
+
<img src=".asset/ODinW.png" alt="ODinW" width="100%">
|
317 |
+
</details>
|
318 |
+
|
319 |
+
<details open>
|
320 |
+
<summary><font size="4">
|
321 |
+
Marrying Grounding DINO with <a href="https://github.com/Stability-AI/StableDiffusion">Stable Diffusion</a> for Image Editing
|
322 |
+
</font></summary>
|
323 |
+
See our example <a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/demo/image_editing_with_groundingdino_stablediffusion.ipynb">notebook</a> for more details.
|
324 |
+
<img src=".asset/GD_SD.png" alt="GD_SD" width="100%">
|
325 |
+
</details>
|
326 |
+
|
327 |
+
|
328 |
+
<details open>
|
329 |
+
<summary><font size="4">
|
330 |
+
Marrying Grounding DINO with <a href="https://github.com/gligen/GLIGEN">GLIGEN</a> for more Detailed Image Editing.
|
331 |
+
</font></summary>
|
332 |
+
See our example <a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/demo/image_editing_with_groundingdino_gligen.ipynb">notebook</a> for more details.
|
333 |
+
<img src=".asset/GD_GLIGEN.png" alt="GD_GLIGEN" width="100%">
|
334 |
+
</details>
|
335 |
+
|
336 |
+
## :sauropod: Model: Grounding DINO
|
337 |
+
|
338 |
+
Includes: a text backbone, an image backbone, a feature enhancer, a language-guided query selection, and a cross-modality decoder.
|
339 |
+
|
340 |
+
![arch](.asset/arch.png)
|
341 |
+
|
342 |
+
|
343 |
+
## :hearts: Acknowledgement
|
344 |
+
|
345 |
+
Our model is related to [DINO](https://github.com/IDEA-Research/DINO) and [GLIP](https://github.com/microsoft/GLIP). Thanks for their great work!
|
346 |
+
|
347 |
+
We also thank great previous work including DETR, Deformable DETR, SMCA, Conditional DETR, Anchor DETR, Dynamic DETR, DAB-DETR, DN-DETR, etc. More related work are available at [Awesome Detection Transformer](https://github.com/IDEACVR/awesome-detection-transformer). A new toolbox [detrex](https://github.com/IDEA-Research/detrex) is available as well.
|
348 |
+
|
349 |
+
Thanks [Stable Diffusion](https://github.com/Stability-AI/StableDiffusion) and [GLIGEN](https://github.com/gligen/GLIGEN) for their awesome models.
|
350 |
+
|
351 |
+
|
352 |
+
## :black_nib: Citation
|
353 |
+
|
354 |
+
If you find our work helpful for your research, please consider citing the following BibTeX entry.
|
355 |
+
|
356 |
+
```bibtex
|
357 |
+
@article{liu2023grounding,
|
358 |
+
title={Grounding dino: Marrying dino with grounded pre-training for open-set object detection},
|
359 |
+
author={Liu, Shilong and Zeng, Zhaoyang and Ren, Tianhe and Li, Feng and Zhang, Hao and Yang, Jie and Li, Chunyuan and Yang, Jianwei and Su, Hang and Zhu, Jun and others},
|
360 |
+
journal={arXiv preprint arXiv:2303.05499},
|
361 |
+
year={2023}
|
362 |
+
}
|
363 |
+
```
|
364 |
+
|
365 |
+
|
366 |
+
|
367 |
+
|
GroundingDINO/demo/create_coco_dataset.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import typer
|
2 |
+
from groundingdino.util.inference import load_model, load_image, predict
|
3 |
+
from tqdm import tqdm
|
4 |
+
import torchvision
|
5 |
+
import torch
|
6 |
+
import fiftyone as fo
|
7 |
+
|
8 |
+
|
9 |
+
def main(
|
10 |
+
image_directory: str = 'test_grounding_dino',
|
11 |
+
text_prompt: str = 'bus, car',
|
12 |
+
box_threshold: float = 0.15,
|
13 |
+
text_threshold: float = 0.10,
|
14 |
+
export_dataset: bool = False,
|
15 |
+
view_dataset: bool = False,
|
16 |
+
export_annotated_images: bool = True,
|
17 |
+
weights_path : str = "groundingdino_swint_ogc.pth",
|
18 |
+
config_path: str = "../../GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py",
|
19 |
+
subsample: int = None,
|
20 |
+
):
|
21 |
+
|
22 |
+
model = load_model(config_path, weights_path)
|
23 |
+
|
24 |
+
dataset = fo.Dataset.from_images_dir(image_directory)
|
25 |
+
|
26 |
+
samples = []
|
27 |
+
|
28 |
+
if subsample is not None:
|
29 |
+
|
30 |
+
if subsample < len(dataset):
|
31 |
+
dataset = dataset.take(subsample).clone()
|
32 |
+
|
33 |
+
for sample in tqdm(dataset):
|
34 |
+
|
35 |
+
image_source, image = load_image(sample.filepath)
|
36 |
+
|
37 |
+
boxes, logits, phrases = predict(
|
38 |
+
model=model,
|
39 |
+
image=image,
|
40 |
+
caption=text_prompt,
|
41 |
+
box_threshold=box_threshold,
|
42 |
+
text_threshold=text_threshold,
|
43 |
+
)
|
44 |
+
|
45 |
+
detections = []
|
46 |
+
|
47 |
+
for box, logit, phrase in zip(boxes, logits, phrases):
|
48 |
+
|
49 |
+
rel_box = torchvision.ops.box_convert(box, 'cxcywh', 'xywh')
|
50 |
+
|
51 |
+
detections.append(
|
52 |
+
fo.Detection(
|
53 |
+
label=phrase,
|
54 |
+
bounding_box=rel_box,
|
55 |
+
confidence=logit,
|
56 |
+
))
|
57 |
+
|
58 |
+
# Store detections in a field name of your choice
|
59 |
+
sample["detections"] = fo.Detections(detections=detections)
|
60 |
+
sample.save()
|
61 |
+
|
62 |
+
# loads the voxel fiftyone UI ready for viewing the dataset.
|
63 |
+
if view_dataset:
|
64 |
+
session = fo.launch_app(dataset)
|
65 |
+
session.wait()
|
66 |
+
|
67 |
+
# exports COCO dataset ready for training
|
68 |
+
if export_dataset:
|
69 |
+
dataset.export(
|
70 |
+
'coco_dataset',
|
71 |
+
dataset_type=fo.types.COCODetectionDataset,
|
72 |
+
)
|
73 |
+
|
74 |
+
# saves bounding boxes plotted on the input images to disk
|
75 |
+
if export_annotated_images:
|
76 |
+
dataset.draw_labels(
|
77 |
+
'images_with_bounding_boxes',
|
78 |
+
label_fields=['detections']
|
79 |
+
)
|
80 |
+
|
81 |
+
|
82 |
+
if __name__ == '__main__':
|
83 |
+
typer.run(main)
|
GroundingDINO/demo/gradio_app.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from functools import partial
|
3 |
+
import cv2
|
4 |
+
import requests
|
5 |
+
import os
|
6 |
+
from io import BytesIO
|
7 |
+
from PIL import Image
|
8 |
+
import numpy as np
|
9 |
+
from pathlib import Path
|
10 |
+
|
11 |
+
|
12 |
+
import warnings
|
13 |
+
|
14 |
+
import torch
|
15 |
+
|
16 |
+
# prepare the environment
|
17 |
+
os.system("python setup.py build develop --user")
|
18 |
+
os.system("pip install packaging==21.3")
|
19 |
+
os.system("pip install gradio")
|
20 |
+
|
21 |
+
|
22 |
+
warnings.filterwarnings("ignore")
|
23 |
+
|
24 |
+
import gradio as gr
|
25 |
+
|
26 |
+
from groundingdino.models import build_model
|
27 |
+
from groundingdino.util.slconfig import SLConfig
|
28 |
+
from groundingdino.util.utils import clean_state_dict
|
29 |
+
from groundingdino.util.inference import annotate, load_image, predict
|
30 |
+
import groundingdino.datasets.transforms as T
|
31 |
+
|
32 |
+
from huggingface_hub import hf_hub_download
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
# Use this command for evaluate the Grounding DINO model
|
37 |
+
config_file = "groundingdino/config/GroundingDINO_SwinT_OGC.py"
|
38 |
+
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
39 |
+
ckpt_filenmae = "groundingdino_swint_ogc.pth"
|
40 |
+
|
41 |
+
|
42 |
+
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
|
43 |
+
args = SLConfig.fromfile(model_config_path)
|
44 |
+
model = build_model(args)
|
45 |
+
args.device = device
|
46 |
+
|
47 |
+
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
|
48 |
+
checkpoint = torch.load(cache_file, map_location='cpu')
|
49 |
+
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
|
50 |
+
print("Model loaded from {} \n => {}".format(cache_file, log))
|
51 |
+
_ = model.eval()
|
52 |
+
return model
|
53 |
+
|
54 |
+
def image_transform_grounding(init_image):
|
55 |
+
transform = T.Compose([
|
56 |
+
T.RandomResize([800], max_size=1333),
|
57 |
+
T.ToTensor(),
|
58 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
59 |
+
])
|
60 |
+
image, _ = transform(init_image, None) # 3, h, w
|
61 |
+
return init_image, image
|
62 |
+
|
63 |
+
def image_transform_grounding_for_vis(init_image):
|
64 |
+
transform = T.Compose([
|
65 |
+
T.RandomResize([800], max_size=1333),
|
66 |
+
])
|
67 |
+
image, _ = transform(init_image, None) # 3, h, w
|
68 |
+
return image
|
69 |
+
|
70 |
+
model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
|
71 |
+
|
72 |
+
def run_grounding(input_image, grounding_caption, box_threshold, text_threshold):
|
73 |
+
init_image = input_image.convert("RGB")
|
74 |
+
original_size = init_image.size
|
75 |
+
|
76 |
+
_, image_tensor = image_transform_grounding(init_image)
|
77 |
+
image_pil: Image = image_transform_grounding_for_vis(init_image)
|
78 |
+
|
79 |
+
# run grounidng
|
80 |
+
boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold, device='cpu')
|
81 |
+
annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
|
82 |
+
image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
|
83 |
+
|
84 |
+
|
85 |
+
return image_with_box
|
86 |
+
|
87 |
+
if __name__ == "__main__":
|
88 |
+
|
89 |
+
parser = argparse.ArgumentParser("Grounding DINO demo", add_help=True)
|
90 |
+
parser.add_argument("--debug", action="store_true", help="using debug mode")
|
91 |
+
parser.add_argument("--share", action="store_true", help="share the app")
|
92 |
+
args = parser.parse_args()
|
93 |
+
|
94 |
+
block = gr.Blocks().queue()
|
95 |
+
with block:
|
96 |
+
gr.Markdown("# [Grounding DINO](https://github.com/IDEA-Research/GroundingDINO)")
|
97 |
+
gr.Markdown("### Open-World Detection with Grounding DINO")
|
98 |
+
|
99 |
+
with gr.Row():
|
100 |
+
with gr.Column():
|
101 |
+
input_image = gr.Image(source='upload', type="pil")
|
102 |
+
grounding_caption = gr.Textbox(label="Detection Prompt")
|
103 |
+
run_button = gr.Button(label="Run")
|
104 |
+
with gr.Accordion("Advanced options", open=False):
|
105 |
+
box_threshold = gr.Slider(
|
106 |
+
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
|
107 |
+
)
|
108 |
+
text_threshold = gr.Slider(
|
109 |
+
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
|
110 |
+
)
|
111 |
+
|
112 |
+
with gr.Column():
|
113 |
+
gallery = gr.outputs.Image(
|
114 |
+
type="pil",
|
115 |
+
# label="grounding results"
|
116 |
+
).style(full_width=True, full_height=True)
|
117 |
+
# gallery = gr.Gallery(label="Generated images", show_label=False).style(
|
118 |
+
# grid=[1], height="auto", container=True, full_width=True, full_height=True)
|
119 |
+
|
120 |
+
run_button.click(fn=run_grounding, inputs=[
|
121 |
+
input_image, grounding_caption, box_threshold, text_threshold], outputs=[gallery])
|
122 |
+
|
123 |
+
|
124 |
+
block.launch(server_name='0.0.0.0', server_port=7579, debug=args.debug, share=args.share)
|
125 |
+
|
GroundingDINO/demo/image_editing_with_groundingdino_gligen.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
GroundingDINO/demo/image_editing_with_groundingdino_stablediffusion.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
GroundingDINO/demo/inference_on_a_image.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from PIL import Image, ImageDraw, ImageFont
|
8 |
+
|
9 |
+
import groundingdino.datasets.transforms as T
|
10 |
+
from groundingdino.models import build_model
|
11 |
+
from groundingdino.util import box_ops
|
12 |
+
from groundingdino.util.slconfig import SLConfig
|
13 |
+
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
14 |
+
from groundingdino.util.vl_utils import create_positive_map_from_span
|
15 |
+
|
16 |
+
|
17 |
+
def plot_boxes_to_image(image_pil, tgt):
|
18 |
+
H, W = tgt["size"]
|
19 |
+
boxes = tgt["boxes"]
|
20 |
+
labels = tgt["labels"]
|
21 |
+
assert len(boxes) == len(labels), "boxes and labels must have same length"
|
22 |
+
|
23 |
+
draw = ImageDraw.Draw(image_pil)
|
24 |
+
mask = Image.new("L", image_pil.size, 0)
|
25 |
+
mask_draw = ImageDraw.Draw(mask)
|
26 |
+
|
27 |
+
# draw boxes and masks
|
28 |
+
for box, label in zip(boxes, labels):
|
29 |
+
# from 0..1 to 0..W, 0..H
|
30 |
+
box = box * torch.Tensor([W, H, W, H])
|
31 |
+
# from xywh to xyxy
|
32 |
+
box[:2] -= box[2:] / 2
|
33 |
+
box[2:] += box[:2]
|
34 |
+
# random color
|
35 |
+
color = tuple(np.random.randint(0, 255, size=3).tolist())
|
36 |
+
# draw
|
37 |
+
x0, y0, x1, y1 = box
|
38 |
+
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
|
39 |
+
|
40 |
+
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
|
41 |
+
# draw.text((x0, y0), str(label), fill=color)
|
42 |
+
|
43 |
+
font = ImageFont.load_default()
|
44 |
+
if hasattr(font, "getbbox"):
|
45 |
+
bbox = draw.textbbox((x0, y0), str(label), font)
|
46 |
+
else:
|
47 |
+
w, h = draw.textsize(str(label), font)
|
48 |
+
bbox = (x0, y0, w + x0, y0 + h)
|
49 |
+
# bbox = draw.textbbox((x0, y0), str(label))
|
50 |
+
draw.rectangle(bbox, fill=color)
|
51 |
+
draw.text((x0, y0), str(label), fill="white")
|
52 |
+
|
53 |
+
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)
|
54 |
+
|
55 |
+
return image_pil, mask
|
56 |
+
|
57 |
+
|
58 |
+
def load_image(image_path):
|
59 |
+
# load image
|
60 |
+
image_pil = Image.open(image_path).convert("RGB") # load image
|
61 |
+
|
62 |
+
transform = T.Compose(
|
63 |
+
[
|
64 |
+
T.RandomResize([800], max_size=1333),
|
65 |
+
T.ToTensor(),
|
66 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
67 |
+
]
|
68 |
+
)
|
69 |
+
image, _ = transform(image_pil, None) # 3, h, w
|
70 |
+
return image_pil, image
|
71 |
+
|
72 |
+
|
73 |
+
def load_model(model_config_path, model_checkpoint_path, cpu_only=False):
|
74 |
+
args = SLConfig.fromfile(model_config_path)
|
75 |
+
args.device = "cuda" if not cpu_only else "cpu"
|
76 |
+
model = build_model(args)
|
77 |
+
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
|
78 |
+
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
79 |
+
print(load_res)
|
80 |
+
_ = model.eval()
|
81 |
+
return model
|
82 |
+
|
83 |
+
|
84 |
+
def get_grounding_output(model, image, caption, box_threshold, text_threshold=None, with_logits=True, cpu_only=False, token_spans=None):
|
85 |
+
assert text_threshold is not None or token_spans is not None, "text_threshould and token_spans should not be None at the same time!"
|
86 |
+
caption = caption.lower()
|
87 |
+
caption = caption.strip()
|
88 |
+
if not caption.endswith("."):
|
89 |
+
caption = caption + "."
|
90 |
+
device = "cuda" if not cpu_only else "cpu"
|
91 |
+
model = model.to(device)
|
92 |
+
image = image.to(device)
|
93 |
+
with torch.no_grad():
|
94 |
+
outputs = model(image[None], captions=[caption])
|
95 |
+
logits = outputs["pred_logits"].sigmoid()[0] # (nq, 256)
|
96 |
+
boxes = outputs["pred_boxes"][0] # (nq, 4)
|
97 |
+
|
98 |
+
# filter output
|
99 |
+
if token_spans is None:
|
100 |
+
logits_filt = logits.cpu().clone()
|
101 |
+
boxes_filt = boxes.cpu().clone()
|
102 |
+
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
|
103 |
+
logits_filt = logits_filt[filt_mask] # num_filt, 256
|
104 |
+
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
|
105 |
+
|
106 |
+
# get phrase
|
107 |
+
tokenlizer = model.tokenizer
|
108 |
+
tokenized = tokenlizer(caption)
|
109 |
+
# build pred
|
110 |
+
pred_phrases = []
|
111 |
+
for logit, box in zip(logits_filt, boxes_filt):
|
112 |
+
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
|
113 |
+
if with_logits:
|
114 |
+
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
|
115 |
+
else:
|
116 |
+
pred_phrases.append(pred_phrase)
|
117 |
+
else:
|
118 |
+
# given-phrase mode
|
119 |
+
positive_maps = create_positive_map_from_span(
|
120 |
+
model.tokenizer(text_prompt),
|
121 |
+
token_span=token_spans
|
122 |
+
).to(image.device) # n_phrase, 256
|
123 |
+
|
124 |
+
logits_for_phrases = positive_maps @ logits.T # n_phrase, nq
|
125 |
+
all_logits = []
|
126 |
+
all_phrases = []
|
127 |
+
all_boxes = []
|
128 |
+
for (token_span, logit_phr) in zip(token_spans, logits_for_phrases):
|
129 |
+
# get phrase
|
130 |
+
phrase = ' '.join([caption[_s:_e] for (_s, _e) in token_span])
|
131 |
+
# get mask
|
132 |
+
filt_mask = logit_phr > box_threshold
|
133 |
+
# filt box
|
134 |
+
all_boxes.append(boxes[filt_mask])
|
135 |
+
# filt logits
|
136 |
+
all_logits.append(logit_phr[filt_mask])
|
137 |
+
if with_logits:
|
138 |
+
logit_phr_num = logit_phr[filt_mask]
|
139 |
+
all_phrases.extend([phrase + f"({str(logit.item())[:4]})" for logit in logit_phr_num])
|
140 |
+
else:
|
141 |
+
all_phrases.extend([phrase for _ in range(len(filt_mask))])
|
142 |
+
boxes_filt = torch.cat(all_boxes, dim=0).cpu()
|
143 |
+
pred_phrases = all_phrases
|
144 |
+
|
145 |
+
|
146 |
+
return boxes_filt, pred_phrases
|
147 |
+
|
148 |
+
|
149 |
+
if __name__ == "__main__":
|
150 |
+
|
151 |
+
parser = argparse.ArgumentParser("Grounding DINO example", add_help=True)
|
152 |
+
parser.add_argument("--config_file", "-c", type=str, required=True, help="path to config file")
|
153 |
+
parser.add_argument(
|
154 |
+
"--checkpoint_path", "-p", type=str, required=True, help="path to checkpoint file"
|
155 |
+
)
|
156 |
+
parser.add_argument("--image_path", "-i", type=str, required=True, help="path to image file")
|
157 |
+
parser.add_argument("--text_prompt", "-t", type=str, required=True, help="text prompt")
|
158 |
+
parser.add_argument(
|
159 |
+
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
|
160 |
+
)
|
161 |
+
|
162 |
+
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
|
163 |
+
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
|
164 |
+
parser.add_argument("--token_spans", type=str, default=None, help=
|
165 |
+
"The positions of start and end positions of phrases of interest. \
|
166 |
+
For example, a caption is 'a cat and a dog', \
|
167 |
+
if you would like to detect 'cat', the token_spans should be '[[[2, 5]], ]', since 'a cat and a dog'[2:5] is 'cat'. \
|
168 |
+
if you would like to detect 'a cat', the token_spans should be '[[[0, 1], [2, 5]], ]', since 'a cat and a dog'[0:1] is 'a', and 'a cat and a dog'[2:5] is 'cat'. \
|
169 |
+
")
|
170 |
+
|
171 |
+
parser.add_argument("--cpu-only", action="store_true", help="running on cpu only!, default=False")
|
172 |
+
args = parser.parse_args()
|
173 |
+
|
174 |
+
# cfg
|
175 |
+
config_file = args.config_file # change the path of the model config file
|
176 |
+
checkpoint_path = args.checkpoint_path # change the path of the model
|
177 |
+
image_path = args.image_path
|
178 |
+
text_prompt = args.text_prompt
|
179 |
+
output_dir = args.output_dir
|
180 |
+
box_threshold = args.box_threshold
|
181 |
+
text_threshold = args.text_threshold
|
182 |
+
token_spans = args.token_spans
|
183 |
+
|
184 |
+
# make dir
|
185 |
+
os.makedirs(output_dir, exist_ok=True)
|
186 |
+
# load image
|
187 |
+
image_pil, image = load_image(image_path)
|
188 |
+
# load model
|
189 |
+
model = load_model(config_file, checkpoint_path, cpu_only=args.cpu_only)
|
190 |
+
|
191 |
+
# visualize raw image
|
192 |
+
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
|
193 |
+
|
194 |
+
# set the text_threshold to None if token_spans is set.
|
195 |
+
if token_spans is not None:
|
196 |
+
text_threshold = None
|
197 |
+
print("Using token_spans. Set the text_threshold to None.")
|
198 |
+
|
199 |
+
|
200 |
+
# run model
|
201 |
+
boxes_filt, pred_phrases = get_grounding_output(
|
202 |
+
model, image, text_prompt, box_threshold, text_threshold, cpu_only=args.cpu_only, token_spans=eval(f"{token_spans}")
|
203 |
+
)
|
204 |
+
|
205 |
+
# visualize pred
|
206 |
+
size = image_pil.size
|
207 |
+
pred_dict = {
|
208 |
+
"boxes": boxes_filt,
|
209 |
+
"size": [size[1], size[0]], # H,W
|
210 |
+
"labels": pred_phrases,
|
211 |
+
}
|
212 |
+
# import ipdb; ipdb.set_trace()
|
213 |
+
image_with_box = plot_boxes_to_image(image_pil, pred_dict)[0]
|
214 |
+
image_with_box.save(os.path.join(output_dir, "pred.jpg"))
|
GroundingDINO/demo/test_ap_on_coco.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import time
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.utils.data import DataLoader, DistributedSampler
|
10 |
+
|
11 |
+
from groundingdino.models import build_model
|
12 |
+
import groundingdino.datasets.transforms as T
|
13 |
+
from groundingdino.util import box_ops, get_tokenlizer
|
14 |
+
from groundingdino.util.misc import clean_state_dict, collate_fn
|
15 |
+
from groundingdino.util.slconfig import SLConfig
|
16 |
+
|
17 |
+
# from torchvision.datasets import CocoDetection
|
18 |
+
import torchvision
|
19 |
+
|
20 |
+
from groundingdino.util.vl_utils import build_captions_and_token_span, create_positive_map_from_span
|
21 |
+
from groundingdino.datasets.cocogrounding_eval import CocoGroundingEvaluator
|
22 |
+
|
23 |
+
|
24 |
+
def load_model(model_config_path: str, model_checkpoint_path: str, device: str = "cuda"):
|
25 |
+
args = SLConfig.fromfile(model_config_path)
|
26 |
+
args.device = device
|
27 |
+
model = build_model(args)
|
28 |
+
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
|
29 |
+
model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
30 |
+
model.eval()
|
31 |
+
return model
|
32 |
+
|
33 |
+
|
34 |
+
class CocoDetection(torchvision.datasets.CocoDetection):
|
35 |
+
def __init__(self, img_folder, ann_file, transforms):
|
36 |
+
super().__init__(img_folder, ann_file)
|
37 |
+
self._transforms = transforms
|
38 |
+
|
39 |
+
def __getitem__(self, idx):
|
40 |
+
img, target = super().__getitem__(idx) # target: list
|
41 |
+
|
42 |
+
# import ipdb; ipdb.set_trace()
|
43 |
+
|
44 |
+
w, h = img.size
|
45 |
+
boxes = [obj["bbox"] for obj in target]
|
46 |
+
boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
|
47 |
+
boxes[:, 2:] += boxes[:, :2] # xywh -> xyxy
|
48 |
+
boxes[:, 0::2].clamp_(min=0, max=w)
|
49 |
+
boxes[:, 1::2].clamp_(min=0, max=h)
|
50 |
+
# filt invalid boxes/masks/keypoints
|
51 |
+
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
|
52 |
+
boxes = boxes[keep]
|
53 |
+
|
54 |
+
target_new = {}
|
55 |
+
image_id = self.ids[idx]
|
56 |
+
target_new["image_id"] = image_id
|
57 |
+
target_new["boxes"] = boxes
|
58 |
+
target_new["orig_size"] = torch.as_tensor([int(h), int(w)])
|
59 |
+
|
60 |
+
if self._transforms is not None:
|
61 |
+
img, target = self._transforms(img, target_new)
|
62 |
+
|
63 |
+
return img, target
|
64 |
+
|
65 |
+
|
66 |
+
class PostProcessCocoGrounding(nn.Module):
|
67 |
+
""" This module converts the model's output into the format expected by the coco api"""
|
68 |
+
|
69 |
+
def __init__(self, num_select=300, coco_api=None, tokenlizer=None) -> None:
|
70 |
+
super().__init__()
|
71 |
+
self.num_select = num_select
|
72 |
+
|
73 |
+
assert coco_api is not None
|
74 |
+
category_dict = coco_api.dataset['categories']
|
75 |
+
cat_list = [item['name'] for item in category_dict]
|
76 |
+
captions, cat2tokenspan = build_captions_and_token_span(cat_list, True)
|
77 |
+
tokenspanlist = [cat2tokenspan[cat] for cat in cat_list]
|
78 |
+
positive_map = create_positive_map_from_span(
|
79 |
+
tokenlizer(captions), tokenspanlist) # 80, 256. normed
|
80 |
+
|
81 |
+
id_map = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7, 7: 8, 8: 9, 9: 10, 10: 11, 11: 13, 12: 14, 13: 15, 14: 16, 15: 17, 16: 18, 17: 19, 18: 20, 19: 21, 20: 22, 21: 23, 22: 24, 23: 25, 24: 27, 25: 28, 26: 31, 27: 32, 28: 33, 29: 34, 30: 35, 31: 36, 32: 37, 33: 38, 34: 39, 35: 40, 36: 41, 37: 42, 38: 43, 39: 44, 40: 46,
|
82 |
+
41: 47, 42: 48, 43: 49, 44: 50, 45: 51, 46: 52, 47: 53, 48: 54, 49: 55, 50: 56, 51: 57, 52: 58, 53: 59, 54: 60, 55: 61, 56: 62, 57: 63, 58: 64, 59: 65, 60: 67, 61: 70, 62: 72, 63: 73, 64: 74, 65: 75, 66: 76, 67: 77, 68: 78, 69: 79, 70: 80, 71: 81, 72: 82, 73: 84, 74: 85, 75: 86, 76: 87, 77: 88, 78: 89, 79: 90}
|
83 |
+
|
84 |
+
# build a mapping from label_id to pos_map
|
85 |
+
new_pos_map = torch.zeros((91, 256))
|
86 |
+
for k, v in id_map.items():
|
87 |
+
new_pos_map[v] = positive_map[k]
|
88 |
+
self.positive_map = new_pos_map
|
89 |
+
|
90 |
+
@torch.no_grad()
|
91 |
+
def forward(self, outputs, target_sizes, not_to_xyxy=False):
|
92 |
+
""" Perform the computation
|
93 |
+
Parameters:
|
94 |
+
outputs: raw outputs of the model
|
95 |
+
target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch
|
96 |
+
For evaluation, this must be the original image size (before any data augmentation)
|
97 |
+
For visualization, this should be the image size after data augment, but before padding
|
98 |
+
"""
|
99 |
+
num_select = self.num_select
|
100 |
+
out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes']
|
101 |
+
|
102 |
+
# pos map to logit
|
103 |
+
prob_to_token = out_logits.sigmoid() # bs, 100, 256
|
104 |
+
pos_maps = self.positive_map.to(prob_to_token.device)
|
105 |
+
# (bs, 100, 256) @ (91, 256).T -> (bs, 100, 91)
|
106 |
+
prob_to_label = prob_to_token @ pos_maps.T
|
107 |
+
|
108 |
+
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
|
109 |
+
# import ipdb; ipdb.set_trace()
|
110 |
+
|
111 |
+
assert len(out_logits) == len(target_sizes)
|
112 |
+
assert target_sizes.shape[1] == 2
|
113 |
+
|
114 |
+
prob = prob_to_label
|
115 |
+
topk_values, topk_indexes = torch.topk(
|
116 |
+
prob.view(out_logits.shape[0], -1), num_select, dim=1)
|
117 |
+
scores = topk_values
|
118 |
+
topk_boxes = topk_indexes // prob.shape[2]
|
119 |
+
labels = topk_indexes % prob.shape[2]
|
120 |
+
|
121 |
+
if not_to_xyxy:
|
122 |
+
boxes = out_bbox
|
123 |
+
else:
|
124 |
+
boxes = box_ops.box_cxcywh_to_xyxy(out_bbox)
|
125 |
+
|
126 |
+
boxes = torch.gather(
|
127 |
+
boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))
|
128 |
+
|
129 |
+
# and from relative [0, 1] to absolute [0, height] coordinates
|
130 |
+
img_h, img_w = target_sizes.unbind(1)
|
131 |
+
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
|
132 |
+
boxes = boxes * scale_fct[:, None, :]
|
133 |
+
|
134 |
+
results = [{'scores': s, 'labels': l, 'boxes': b}
|
135 |
+
for s, l, b in zip(scores, labels, boxes)]
|
136 |
+
|
137 |
+
return results
|
138 |
+
|
139 |
+
|
140 |
+
def main(args):
|
141 |
+
# config
|
142 |
+
cfg = SLConfig.fromfile(args.config_file)
|
143 |
+
|
144 |
+
# build model
|
145 |
+
model = load_model(args.config_file, args.checkpoint_path)
|
146 |
+
model = model.to(args.device)
|
147 |
+
model = model.eval()
|
148 |
+
|
149 |
+
# build dataloader
|
150 |
+
transform = T.Compose(
|
151 |
+
[
|
152 |
+
T.RandomResize([800], max_size=1333),
|
153 |
+
T.ToTensor(),
|
154 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
155 |
+
]
|
156 |
+
)
|
157 |
+
dataset = CocoDetection(
|
158 |
+
args.image_dir, args.anno_path, transforms=transform)
|
159 |
+
data_loader = DataLoader(
|
160 |
+
dataset, batch_size=1, shuffle=False, num_workers=args.num_workers, collate_fn=collate_fn)
|
161 |
+
|
162 |
+
# build post processor
|
163 |
+
tokenlizer = get_tokenlizer.get_tokenlizer(cfg.text_encoder_type)
|
164 |
+
postprocessor = PostProcessCocoGrounding(
|
165 |
+
coco_api=dataset.coco, tokenlizer=tokenlizer)
|
166 |
+
|
167 |
+
# build evaluator
|
168 |
+
evaluator = CocoGroundingEvaluator(
|
169 |
+
dataset.coco, iou_types=("bbox",), useCats=True)
|
170 |
+
|
171 |
+
# build captions
|
172 |
+
category_dict = dataset.coco.dataset['categories']
|
173 |
+
cat_list = [item['name'] for item in category_dict]
|
174 |
+
caption = " . ".join(cat_list) + ' .'
|
175 |
+
print("Input text prompt:", caption)
|
176 |
+
|
177 |
+
# run inference
|
178 |
+
start = time.time()
|
179 |
+
for i, (images, targets) in enumerate(data_loader):
|
180 |
+
# get images and captions
|
181 |
+
images = images.tensors.to(args.device)
|
182 |
+
bs = images.shape[0]
|
183 |
+
input_captions = [caption] * bs
|
184 |
+
|
185 |
+
# feed to the model
|
186 |
+
outputs = model(images, captions=input_captions)
|
187 |
+
|
188 |
+
orig_target_sizes = torch.stack(
|
189 |
+
[t["orig_size"] for t in targets], dim=0).to(images.device)
|
190 |
+
results = postprocessor(outputs, orig_target_sizes)
|
191 |
+
cocogrounding_res = {
|
192 |
+
target["image_id"]: output for target, output in zip(targets, results)}
|
193 |
+
evaluator.update(cocogrounding_res)
|
194 |
+
|
195 |
+
if (i+1) % 30 == 0:
|
196 |
+
used_time = time.time() - start
|
197 |
+
eta = len(data_loader) / (i+1e-5) * used_time - used_time
|
198 |
+
print(
|
199 |
+
f"processed {i}/{len(data_loader)} images. time: {used_time:.2f}s, ETA: {eta:.2f}s")
|
200 |
+
|
201 |
+
evaluator.synchronize_between_processes()
|
202 |
+
evaluator.accumulate()
|
203 |
+
evaluator.summarize()
|
204 |
+
|
205 |
+
print("Final results:", evaluator.coco_eval["bbox"].stats.tolist())
|
206 |
+
|
207 |
+
|
208 |
+
if __name__ == "__main__":
|
209 |
+
parser = argparse.ArgumentParser(
|
210 |
+
"Grounding DINO eval on COCO", add_help=True)
|
211 |
+
# load model
|
212 |
+
parser.add_argument("--config_file", "-c", type=str,
|
213 |
+
required=True, help="path to config file")
|
214 |
+
parser.add_argument(
|
215 |
+
"--checkpoint_path", "-p", type=str, required=True, help="path to checkpoint file"
|
216 |
+
)
|
217 |
+
parser.add_argument("--device", type=str, default="cuda",
|
218 |
+
help="running device (default: cuda)")
|
219 |
+
|
220 |
+
# post processing
|
221 |
+
parser.add_argument("--num_select", type=int, default=300,
|
222 |
+
help="number of topk to select")
|
223 |
+
|
224 |
+
# coco info
|
225 |
+
parser.add_argument("--anno_path", type=str,
|
226 |
+
required=True, help="coco root")
|
227 |
+
parser.add_argument("--image_dir", type=str,
|
228 |
+
required=True, help="coco image dir")
|
229 |
+
parser.add_argument("--num_workers", type=int, default=4,
|
230 |
+
help="number of workers for dataloader")
|
231 |
+
args = parser.parse_args()
|
232 |
+
|
233 |
+
main(args)
|
GroundingDINO/environment.yaml
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: dino
|
2 |
+
channels:
|
3 |
+
- pytorch
|
4 |
+
- nvidia
|
5 |
+
- conda-forge
|
6 |
+
- defaults
|
7 |
+
dependencies:
|
8 |
+
- addict=2.4.0=pyhd8ed1ab_2
|
9 |
+
- aiohttp=3.8.5=py39ha55989b_0
|
10 |
+
- aiosignal=1.3.1=pyhd8ed1ab_0
|
11 |
+
- asttokens=2.0.5=pyhd3eb1b0_0
|
12 |
+
- async-timeout=4.0.3=pyhd8ed1ab_0
|
13 |
+
- attrs=23.1.0=pyh71513ae_1
|
14 |
+
- aws-c-auth=0.7.0=h6f3c987_2
|
15 |
+
- aws-c-cal=0.6.0=h6ba3258_0
|
16 |
+
- aws-c-common=0.8.23=hcfcfb64_0
|
17 |
+
- aws-c-compression=0.2.17=h420beca_1
|
18 |
+
- aws-c-event-stream=0.3.1=had47b81_1
|
19 |
+
- aws-c-http=0.7.11=h72ba615_0
|
20 |
+
- aws-c-io=0.13.28=ha35c040_0
|
21 |
+
- aws-c-mqtt=0.8.14=h4941efa_2
|
22 |
+
- aws-c-s3=0.3.13=he04eaa7_2
|
23 |
+
- aws-c-sdkutils=0.1.11=h420beca_1
|
24 |
+
- aws-checksums=0.1.16=h420beca_1
|
25 |
+
- aws-crt-cpp=0.20.3=h247a981_4
|
26 |
+
- aws-sdk-cpp=1.10.57=h1a0519f_17
|
27 |
+
- backcall=0.2.0=pyhd3eb1b0_0
|
28 |
+
- blas=2.118=mkl
|
29 |
+
- blas-devel=3.9.0=18_win64_mkl
|
30 |
+
- brotli=1.0.9=hcfcfb64_9
|
31 |
+
- brotli-bin=1.0.9=hcfcfb64_9
|
32 |
+
- brotli-python=1.0.9=py39h99910a6_9
|
33 |
+
- bzip2=1.0.8=h8ffe710_4
|
34 |
+
- c-ares=1.19.1=hcfcfb64_0
|
35 |
+
- ca-certificates=2023.08.22=haa95532_0
|
36 |
+
- certifi=2023.7.22=py39haa95532_0
|
37 |
+
- charset-normalizer=3.2.0=pyhd8ed1ab_0
|
38 |
+
- click=8.1.7=win_pyh7428d3b_0
|
39 |
+
- colorama=0.4.6=pyhd8ed1ab_0
|
40 |
+
- comm=0.1.2=py39haa95532_0
|
41 |
+
- contourpy=1.1.1=py39h1f6ef14_1
|
42 |
+
- cuda-cccl=12.2.140=0
|
43 |
+
- cuda-cudart=11.8.89=0
|
44 |
+
- cuda-cudart-dev=11.8.89=0
|
45 |
+
- cuda-cupti=11.8.87=0
|
46 |
+
- cuda-libraries=11.8.0=0
|
47 |
+
- cuda-libraries-dev=11.8.0=0
|
48 |
+
- cuda-nvrtc=11.8.89=0
|
49 |
+
- cuda-nvrtc-dev=11.8.89=0
|
50 |
+
- cuda-nvtx=11.8.86=0
|
51 |
+
- cuda-profiler-api=12.2.140=0
|
52 |
+
- cuda-runtime=11.8.0=0
|
53 |
+
- cycler=0.11.0=pyhd8ed1ab_0
|
54 |
+
- cython=3.0.0=py39h2bbff1b_0
|
55 |
+
- dataclasses=0.8=pyhc8e2a94_3
|
56 |
+
- datasets=2.14.5=pyhd8ed1ab_0
|
57 |
+
- debugpy=1.6.7=py39hd77b12b_0
|
58 |
+
- decorator=5.1.1=pyhd3eb1b0_0
|
59 |
+
- dill=0.3.7=pyhd8ed1ab_0
|
60 |
+
- exceptiongroup=1.0.4=py39haa95532_0
|
61 |
+
- executing=0.8.3=pyhd3eb1b0_0
|
62 |
+
- filelock=3.12.4=pyhd8ed1ab_0
|
63 |
+
- fonttools=4.42.1=py39ha55989b_0
|
64 |
+
- freeglut=3.2.2=h63175ca_2
|
65 |
+
- freetype=2.12.1=hdaf720e_2
|
66 |
+
- frozenlist=1.4.0=py39ha55989b_1
|
67 |
+
- fsspec=2023.6.0=pyh1a96a4e_0
|
68 |
+
- gettext=0.21.1=h5728263_0
|
69 |
+
- glib=2.78.0=h12be248_0
|
70 |
+
- glib-tools=2.78.0=h12be248_0
|
71 |
+
- gst-plugins-base=1.22.6=h001b923_1
|
72 |
+
- gstreamer=1.22.6=hb4038d2_1
|
73 |
+
- huggingface_hub=0.17.3=pyhd8ed1ab_0
|
74 |
+
- icu=70.1=h0e60522_0
|
75 |
+
- idna=3.4=pyhd8ed1ab_0
|
76 |
+
- importlib-metadata=6.8.0=pyha770c72_0
|
77 |
+
- importlib-resources=6.1.0=pyhd8ed1ab_0
|
78 |
+
- importlib_metadata=6.8.0=hd8ed1ab_0
|
79 |
+
- importlib_resources=6.1.0=pyhd8ed1ab_0
|
80 |
+
- intel-openmp=2023.2.0=h57928b3_49503
|
81 |
+
- ipykernel=6.25.0=py39h9909e9c_0
|
82 |
+
- ipython=8.15.0=py39haa95532_0
|
83 |
+
- jasper=2.0.33=hc2e4405_1
|
84 |
+
- jedi=0.18.1=py39haa95532_1
|
85 |
+
- jinja2=3.1.2=pyhd8ed1ab_1
|
86 |
+
- joblib=1.3.2=pyhd8ed1ab_0
|
87 |
+
- jpeg=9e=hcfcfb64_3
|
88 |
+
- jupyter_client=8.1.0=py39haa95532_0
|
89 |
+
- jupyter_core=5.3.0=py39haa95532_0
|
90 |
+
- kiwisolver=1.4.5=py39h1f6ef14_1
|
91 |
+
- krb5=1.20.1=heb0366b_0
|
92 |
+
- lcms2=2.14=h90d422f_0
|
93 |
+
- lerc=4.0.0=h63175ca_0
|
94 |
+
- libabseil=20230125.3=cxx17_h63175ca_0
|
95 |
+
- libarrow=12.0.1=h12e5d06_5_cpu
|
96 |
+
- libblas=3.9.0=18_win64_mkl
|
97 |
+
- libbrotlicommon=1.0.9=hcfcfb64_9
|
98 |
+
- libbrotlidec=1.0.9=hcfcfb64_9
|
99 |
+
- libbrotlienc=1.0.9=hcfcfb64_9
|
100 |
+
- libcblas=3.9.0=18_win64_mkl
|
101 |
+
- libclang=15.0.7=default_h77d9078_3
|
102 |
+
- libclang13=15.0.7=default_h77d9078_3
|
103 |
+
- libcrc32c=1.1.2=h0e60522_0
|
104 |
+
- libcublas=11.11.3.6=0
|
105 |
+
- libcublas-dev=11.11.3.6=0
|
106 |
+
- libcufft=10.9.0.58=0
|
107 |
+
- libcufft-dev=10.9.0.58=0
|
108 |
+
- libcurand=10.3.3.141=0
|
109 |
+
- libcurand-dev=10.3.3.141=0
|
110 |
+
- libcurl=8.1.2=h68f0423_0
|
111 |
+
- libcusolver=11.4.1.48=0
|
112 |
+
- libcusolver-dev=11.4.1.48=0
|
113 |
+
- libcusparse=11.7.5.86=0
|
114 |
+
- libcusparse-dev=11.7.5.86=0
|
115 |
+
- libdeflate=1.14=hcfcfb64_0
|
116 |
+
- libevent=2.1.12=h3671451_1
|
117 |
+
- libffi=3.4.2=h8ffe710_5
|
118 |
+
- libglib=2.78.0=he8f3873_0
|
119 |
+
- libgoogle-cloud=2.12.0=h00b2bdc_1
|
120 |
+
- libgrpc=1.54.3=ha177ca7_0
|
121 |
+
- libhwloc=2.9.3=default_haede6df_1009
|
122 |
+
- libiconv=1.17=h8ffe710_0
|
123 |
+
- liblapack=3.9.0=18_win64_mkl
|
124 |
+
- liblapacke=3.9.0=18_win64_mkl
|
125 |
+
- libnpp=11.8.0.86=0
|
126 |
+
- libnpp-dev=11.8.0.86=0
|
127 |
+
- libnvjpeg=11.9.0.86=0
|
128 |
+
- libnvjpeg-dev=11.9.0.86=0
|
129 |
+
- libogg=1.3.4=h8ffe710_1
|
130 |
+
- libopencv=4.5.3=py39h488c12c_8
|
131 |
+
- libpng=1.6.39=h19919ed_0
|
132 |
+
- libprotobuf=3.21.12=h12be248_2
|
133 |
+
- libsodium=1.0.18=h62dcd97_0
|
134 |
+
- libsqlite=3.43.0=hcfcfb64_0
|
135 |
+
- libssh2=1.11.0=h7dfc565_0
|
136 |
+
- libthrift=0.18.1=h06f6336_2
|
137 |
+
- libtiff=4.4.0=hc4f729c_5
|
138 |
+
- libutf8proc=2.8.0=h82a8f57_0
|
139 |
+
- libuv=1.44.2=hcfcfb64_1
|
140 |
+
- libvorbis=1.3.7=h0e60522_0
|
141 |
+
- libwebp-base=1.3.2=hcfcfb64_0
|
142 |
+
- libxcb=1.13=hcd874cb_1004
|
143 |
+
- libxml2=2.11.5=hc3477c8_1
|
144 |
+
- libzlib=1.2.13=hcfcfb64_5
|
145 |
+
- lz4-c=1.9.4=hcfcfb64_0
|
146 |
+
- m2w64-gcc-libgfortran=5.3.0=6
|
147 |
+
- m2w64-gcc-libs=5.3.0=7
|
148 |
+
- m2w64-gcc-libs-core=5.3.0=7
|
149 |
+
- m2w64-gmp=6.1.0=2
|
150 |
+
- m2w64-libwinpthread-git=5.0.0.4634.697f757=2
|
151 |
+
- markupsafe=2.1.3=py39ha55989b_1
|
152 |
+
- matplotlib-base=3.8.0=py39hf19769e_1
|
153 |
+
- matplotlib-inline=0.1.6=py39haa95532_0
|
154 |
+
- mkl=2022.1.0=h6a75c08_874
|
155 |
+
- mkl-devel=2022.1.0=h57928b3_875
|
156 |
+
- mkl-include=2022.1.0=h6a75c08_874
|
157 |
+
- mpmath=1.3.0=pyhd8ed1ab_0
|
158 |
+
- msys2-conda-epoch=20160418=1
|
159 |
+
- multidict=6.0.4=py39ha55989b_0
|
160 |
+
- multiprocess=0.70.15=py39ha55989b_1
|
161 |
+
- munkres=1.1.4=pyh9f0ad1d_0
|
162 |
+
- nest-asyncio=1.5.6=py39haa95532_0
|
163 |
+
- networkx=3.1=pyhd8ed1ab_0
|
164 |
+
- numpy=1.26.0=py39hddb5d58_0
|
165 |
+
- opencv=4.5.3=py39hcbf5309_8
|
166 |
+
- openjpeg=2.5.0=hc9384bd_1
|
167 |
+
- openssl=3.1.3=hcfcfb64_0
|
168 |
+
- orc=1.9.0=hada7b9e_1
|
169 |
+
- packaging=23.1=pyhd8ed1ab_0
|
170 |
+
- pandas=2.1.1=py39h32e6231_0
|
171 |
+
- parso=0.8.3=pyhd3eb1b0_0
|
172 |
+
- pcre2=10.40=h17e33f8_0
|
173 |
+
- pickleshare=0.7.5=pyhd3eb1b0_1003
|
174 |
+
- pillow=9.2.0=py39h595c93f_3
|
175 |
+
- pip=23.2.1=pyhd8ed1ab_0
|
176 |
+
- platformdirs=3.10.0=pyhd8ed1ab_0
|
177 |
+
- prompt-toolkit=3.0.36=py39haa95532_0
|
178 |
+
- psutil=5.9.0=py39h2bbff1b_0
|
179 |
+
- pthread-stubs=0.4=hcd874cb_1001
|
180 |
+
- pthreads-win32=2.9.1=hfa6e2cd_3
|
181 |
+
- pure_eval=0.2.2=pyhd3eb1b0_0
|
182 |
+
- py-opencv=4.5.3=py39h00e5391_8
|
183 |
+
- pyarrow=12.0.1=py39hca4e8af_5_cpu
|
184 |
+
- pycocotools=2.0.6=py39hc266a54_1
|
185 |
+
- pygments=2.15.1=py39haa95532_1
|
186 |
+
- pyparsing=3.1.1=pyhd8ed1ab_0
|
187 |
+
- pysocks=1.7.1=pyh0701188_6
|
188 |
+
- python=3.9.18=h4de0772_0_cpython
|
189 |
+
- python-dateutil=2.8.2=pyhd8ed1ab_0
|
190 |
+
- python-tzdata=2023.3=pyhd8ed1ab_0
|
191 |
+
- python-xxhash=3.3.0=py39ha55989b_1
|
192 |
+
- python_abi=3.9=4_cp39
|
193 |
+
- pytorch=2.0.1=py3.9_cuda11.8_cudnn8_0
|
194 |
+
- pytorch-cuda=11.8=h24eeafa_5
|
195 |
+
- pytorch-mutex=1.0=cuda
|
196 |
+
- pytz=2023.3.post1=pyhd8ed1ab_0
|
197 |
+
- pywin32=305=py39h2bbff1b_0
|
198 |
+
- pyyaml=6.0.1=py39ha55989b_1
|
199 |
+
- pyzmq=25.1.0=py39hd77b12b_0
|
200 |
+
- qt-main=5.15.8=h720456b_6
|
201 |
+
- re2=2023.03.02=hd4eee63_0
|
202 |
+
- regex=2023.8.8=py39ha55989b_1
|
203 |
+
- requests=2.31.0=pyhd8ed1ab_0
|
204 |
+
- sacremoses=0.0.53=pyhd8ed1ab_0
|
205 |
+
- safetensors=0.3.3=py39hf21820d_1
|
206 |
+
- setuptools=68.2.2=pyhd8ed1ab_0
|
207 |
+
- six=1.16.0=pyh6c4a22f_0
|
208 |
+
- snappy=1.1.10=hfb803bf_0
|
209 |
+
- stack_data=0.2.0=pyhd3eb1b0_0
|
210 |
+
- sympy=1.12=pyh04b8f61_3
|
211 |
+
- tbb=2021.10.0=h91493d7_1
|
212 |
+
- timm=0.9.7=pyhd8ed1ab_0
|
213 |
+
- tk=8.6.13=hcfcfb64_0
|
214 |
+
- tokenizers=0.13.3=py39hca44cb7_0
|
215 |
+
- tomli=2.0.1=pyhd8ed1ab_0
|
216 |
+
- tornado=6.3.2=py39h2bbff1b_0
|
217 |
+
- tqdm=4.66.1=pyhd8ed1ab_0
|
218 |
+
- traitlets=5.7.1=py39haa95532_0
|
219 |
+
- transformers=4.33.2=pyhd8ed1ab_0
|
220 |
+
- typing-extensions=4.8.0=hd8ed1ab_0
|
221 |
+
- typing_extensions=4.8.0=pyha770c72_0
|
222 |
+
- tzdata=2023c=h71feb2d_0
|
223 |
+
- ucrt=10.0.22621.0=h57928b3_0
|
224 |
+
- unicodedata2=15.0.0=py39ha55989b_1
|
225 |
+
- urllib3=2.0.5=pyhd8ed1ab_0
|
226 |
+
- vc=14.3=h64f974e_17
|
227 |
+
- vc14_runtime=14.36.32532=hdcecf7f_17
|
228 |
+
- vs2015_runtime=14.36.32532=h05e6639_17
|
229 |
+
- wcwidth=0.2.5=pyhd3eb1b0_0
|
230 |
+
- wheel=0.41.2=pyhd8ed1ab_0
|
231 |
+
- win_inet_pton=1.1.0=pyhd8ed1ab_6
|
232 |
+
- xorg-libxau=1.0.11=hcd874cb_0
|
233 |
+
- xorg-libxdmcp=1.1.3=hcd874cb_0
|
234 |
+
- xxhash=0.8.2=hcfcfb64_0
|
235 |
+
- xz=5.2.6=h8d14728_0
|
236 |
+
- yaml=0.2.5=h8ffe710_2
|
237 |
+
- yapf=0.40.1=pyhd8ed1ab_0
|
238 |
+
- yarl=1.9.2=py39ha55989b_0
|
239 |
+
- zeromq=4.3.4=hd77b12b_0
|
240 |
+
- zipp=3.17.0=pyhd8ed1ab_0
|
241 |
+
- zlib=1.2.13=hcfcfb64_5
|
242 |
+
- zstd=1.5.5=h12be248_0
|
243 |
+
- pip:
|
244 |
+
- opencv-python==4.8.0.76
|
245 |
+
- supervision==0.6.0
|
246 |
+
- torchaudio==2.0.2
|
247 |
+
- torchvision==0.15.2
|
248 |
+
prefix: C:\Users\Makoto\miniconda3\envs\dino
|
GroundingDINO/groundingdino.egg-info/PKG-INFO
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: groundingdino
|
3 |
+
Version: 0.1.0
|
4 |
+
Summary: open-set object detector
|
5 |
+
Home-page: https://github.com/IDEA-Research/GroundingDINO
|
6 |
+
Author: International Digital Economy Academy, Shilong Liu
|
7 |
+
License: Apache License
|
8 |
+
Version 2.0, January 2004
|
9 |
+
http://www.apache.org/licenses/
|
10 |
+
|
11 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
12 |
+
|
13 |
+
1. Definitions.
|
14 |
+
|
15 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
16 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
17 |
+
|
18 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
19 |
+
the copyright owner that is granting the License.
|
20 |
+
|
21 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
22 |
+
other entities that control, are controlled by, or are under common
|
23 |
+
control with that entity. For the purposes of this definition,
|
24 |
+
"control" means (i) the power, direct or indirect, to cause the
|
25 |
+
direction or management of such entity, whether by contract or
|
26 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
27 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
28 |
+
|
29 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
30 |
+
exercising permissions granted by this License.
|
31 |
+
|
32 |
+
"Source" form shall mean the preferred form for making modifications,
|
33 |
+
including but not limited to software source code, documentation
|
34 |
+
source, and configuration files.
|
35 |
+
|
36 |
+
"Object" form shall mean any form resulting from mechanical
|
37 |
+
transformation or translation of a Source form, including but
|
38 |
+
not limited to compiled object code, generated documentation,
|
39 |
+
and conversions to other media types.
|
40 |
+
|
41 |
+
"Work" shall mean the work of authorship, whether in Source or
|
42 |
+
Object form, made available under the License, as indicated by a
|
43 |
+
copyright notice that is included in or attached to the work
|
44 |
+
(an example is provided in the Appendix below).
|
45 |
+
|
46 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
47 |
+
form, that is based on (or derived from) the Work and for which the
|
48 |
+
editorial revisions, annotations, elaborations, or other modifications
|
49 |
+
represent, as a whole, an original work of authorship. For the purposes
|
50 |
+
of this License, Derivative Works shall not include works that remain
|
51 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
52 |
+
the Work and Derivative Works thereof.
|
53 |
+
|
54 |
+
"Contribution" shall mean any work of authorship, including
|
55 |
+
the original version of the Work and any modifications or additions
|
56 |
+
to that Work or Derivative Works thereof, that is intentionally
|
57 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
58 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
59 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
60 |
+
means any form of electronic, verbal, or written communication sent
|
61 |
+
to the Licensor or its representatives, including but not limited to
|
62 |
+
communication on electronic mailing lists, source code control systems,
|
63 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
64 |
+
Licensor for the purpose of discussing and improving the Work, but
|
65 |
+
excluding communication that is conspicuously marked or otherwise
|
66 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
67 |
+
|
68 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
69 |
+
on behalf of whom a Contribution has been received by Licensor and
|
70 |
+
subsequently incorporated within the Work.
|
71 |
+
|
72 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
73 |
+
this License, each Contributor hereby grants to You a perpetual,
|
74 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
75 |
+
copyright license to reproduce, prepare Derivative Works of,
|
76 |
+
publicly display, publicly perform, sublicense, and distribute the
|
77 |
+
Work and such Derivative Works in Source or Object form.
|
78 |
+
|
79 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
80 |
+
this License, each Contributor hereby grants to You a perpetual,
|
81 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
82 |
+
(except as stated in this section) patent license to make, have made,
|
83 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
84 |
+
where such license applies only to those patent claims licensable
|
85 |
+
by such Contributor that are necessarily infringed by their
|
86 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
87 |
+
with the Work to which such Contribution(s) was submitted. If You
|
88 |
+
institute patent litigation against any entity (including a
|
89 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
90 |
+
or a Contribution incorporated within the Work constitutes direct
|
91 |
+
or contributory patent infringement, then any patent licenses
|
92 |
+
granted to You under this License for that Work shall terminate
|
93 |
+
as of the date such litigation is filed.
|
94 |
+
|
95 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
96 |
+
Work or Derivative Works thereof in any medium, with or without
|
97 |
+
modifications, and in Source or Object form, provided that You
|
98 |
+
meet the following conditions:
|
99 |
+
|
100 |
+
(a) You must give any other recipients of the Work or
|
101 |
+
Derivative Works a copy of this License; and
|
102 |
+
|
103 |
+
(b) You must cause any modified files to carry prominent notices
|
104 |
+
stating that You changed the files; and
|
105 |
+
|
106 |
+
(c) You must retain, in the Source form of any Derivative Works
|
107 |
+
that You distribute, all copyright, patent, trademark, and
|
108 |
+
attribution notices from the Source form of the Work,
|
109 |
+
excluding those notices that do not pertain to any part of
|
110 |
+
the Derivative Works; and
|
111 |
+
|
112 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
113 |
+
distribution, then any Derivative Works that You distribute must
|
114 |
+
include a readable copy of the attribution notices contained
|
115 |
+
within such NOTICE file, excluding those notices that do not
|
116 |
+
pertain to any part of the Derivative Works, in at least one
|
117 |
+
of the following places: within a NOTICE text file distributed
|
118 |
+
as part of the Derivative Works; within the Source form or
|
119 |
+
documentation, if provided along with the Derivative Works; or,
|
120 |
+
within a display generated by the Derivative Works, if and
|
121 |
+
wherever such third-party notices normally appear. The contents
|
122 |
+
of the NOTICE file are for informational purposes only and
|
123 |
+
do not modify the License. You may add Your own attribution
|
124 |
+
notices within Derivative Works that You distribute, alongside
|
125 |
+
or as an addendum to the NOTICE text from the Work, provided
|
126 |
+
that such additional attribution notices cannot be construed
|
127 |
+
as modifying the License.
|
128 |
+
|
129 |
+
You may add Your own copyright statement to Your modifications and
|
130 |
+
may provide additional or different license terms and conditions
|
131 |
+
for use, reproduction, or distribution of Your modifications, or
|
132 |
+
for any such Derivative Works as a whole, provided Your use,
|
133 |
+
reproduction, and distribution of the Work otherwise complies with
|
134 |
+
the conditions stated in this License.
|
135 |
+
|
136 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
137 |
+
any Contribution intentionally submitted for inclusion in the Work
|
138 |
+
by You to the Licensor shall be under the terms and conditions of
|
139 |
+
this License, without any additional terms or conditions.
|
140 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
141 |
+
the terms of any separate license agreement you may have executed
|
142 |
+
with Licensor regarding such Contributions.
|
143 |
+
|
144 |
+
6. Trademarks. This License does not grant permission to use the trade
|
145 |
+
names, trademarks, service marks, or product names of the Licensor,
|
146 |
+
except as required for reasonable and customary use in describing the
|
147 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
148 |
+
|
149 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
150 |
+
agreed to in writing, Licensor provides the Work (and each
|
151 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
152 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
153 |
+
implied, including, without limitation, any warranties or conditions
|
154 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
155 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
156 |
+
appropriateness of using or redistributing the Work and assume any
|
157 |
+
risks associated with Your exercise of permissions under this License.
|
158 |
+
|
159 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
160 |
+
whether in tort (including negligence), contract, or otherwise,
|
161 |
+
unless required by applicable law (such as deliberate and grossly
|
162 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
163 |
+
liable to You for damages, including any direct, indirect, special,
|
164 |
+
incidental, or consequential damages of any character arising as a
|
165 |
+
result of this License or out of the use or inability to use the
|
166 |
+
Work (including but not limited to damages for loss of goodwill,
|
167 |
+
work stoppage, computer failure or malfunction, or any and all
|
168 |
+
other commercial damages or losses), even if such Contributor
|
169 |
+
has been advised of the possibility of such damages.
|
170 |
+
|
171 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
172 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
173 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
174 |
+
or other liability obligations and/or rights consistent with this
|
175 |
+
License. However, in accepting such obligations, You may act only
|
176 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
177 |
+
of any other Contributor, and only if You agree to indemnify,
|
178 |
+
defend, and hold each Contributor harmless for any liability
|
179 |
+
incurred by, or claims asserted against, such Contributor by reason
|
180 |
+
of your accepting any such warranty or additional liability.
|
181 |
+
|
182 |
+
END OF TERMS AND CONDITIONS
|
183 |
+
|
184 |
+
APPENDIX: How to apply the Apache License to your work.
|
185 |
+
|
186 |
+
To apply the Apache License to your work, attach the following
|
187 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
188 |
+
replaced with your own identifying information. (Don't include
|
189 |
+
the brackets!) The text should be enclosed in the appropriate
|
190 |
+
comment syntax for the file format. We also recommend that a
|
191 |
+
file or class name and description of purpose be included on the
|
192 |
+
same "printed page" as the copyright notice for easier
|
193 |
+
identification within third-party archives.
|
194 |
+
|
195 |
+
Copyright 2023 - present, IDEA Research.
|
196 |
+
|
197 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
198 |
+
you may not use this file except in compliance with the License.
|
199 |
+
You may obtain a copy of the License at
|
200 |
+
|
201 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
202 |
+
|
203 |
+
Unless required by applicable law or agreed to in writing, software
|
204 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
205 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
206 |
+
See the License for the specific language governing permissions and
|
207 |
+
limitations under the License.
|
208 |
+
|
209 |
+
License-File: LICENSE
|
GroundingDINO/groundingdino.egg-info/SOURCES.txt
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
LICENSE
|
2 |
+
README.md
|
3 |
+
setup.py
|
4 |
+
groundingdino/__init__.py
|
5 |
+
groundingdino/version.py
|
6 |
+
groundingdino.egg-info/PKG-INFO
|
7 |
+
groundingdino.egg-info/SOURCES.txt
|
8 |
+
groundingdino.egg-info/dependency_links.txt
|
9 |
+
groundingdino.egg-info/requires.txt
|
10 |
+
groundingdino.egg-info/top_level.txt
|
11 |
+
groundingdino/config/GroundingDINO_SwinB_cfg.py
|
12 |
+
groundingdino/config/GroundingDINO_SwinT_OGC.py
|
13 |
+
groundingdino/config/__init__.py
|
14 |
+
groundingdino/datasets/__init__.py
|
15 |
+
groundingdino/datasets/cocogrounding_eval.py
|
16 |
+
groundingdino/datasets/transforms.py
|
17 |
+
groundingdino/models/__init__.py
|
18 |
+
groundingdino/models/registry.py
|
19 |
+
groundingdino/models/GroundingDINO/__init__.py
|
20 |
+
groundingdino/models/GroundingDINO/bertwarper.py
|
21 |
+
groundingdino/models/GroundingDINO/fuse_modules.py
|
22 |
+
groundingdino/models/GroundingDINO/groundingdino.py
|
23 |
+
groundingdino/models/GroundingDINO/ms_deform_attn.py
|
24 |
+
groundingdino/models/GroundingDINO/transformer.py
|
25 |
+
groundingdino/models/GroundingDINO/transformer_vanilla.py
|
26 |
+
groundingdino/models/GroundingDINO/utils.py
|
27 |
+
groundingdino/models/GroundingDINO/backbone/__init__.py
|
28 |
+
groundingdino/models/GroundingDINO/backbone/backbone.py
|
29 |
+
groundingdino/models/GroundingDINO/backbone/position_encoding.py
|
30 |
+
groundingdino/models/GroundingDINO/backbone/swin_transformer.py
|
31 |
+
groundingdino/util/__init__.py
|
32 |
+
groundingdino/util/box_ops.py
|
33 |
+
groundingdino/util/get_tokenlizer.py
|
34 |
+
groundingdino/util/inference.py
|
35 |
+
groundingdino/util/logger.py
|
36 |
+
groundingdino/util/misc.py
|
37 |
+
groundingdino/util/slconfig.py
|
38 |
+
groundingdino/util/slio.py
|
39 |
+
groundingdino/util/time_counter.py
|
40 |
+
groundingdino/util/utils.py
|
41 |
+
groundingdino/util/visualizer.py
|
42 |
+
groundingdino/util/vl_utils.py
|
GroundingDINO/groundingdino.egg-info/dependency_links.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
GroundingDINO/groundingdino.egg-info/requires.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
transformers
|
4 |
+
addict
|
5 |
+
yapf
|
6 |
+
timm
|
7 |
+
numpy
|
8 |
+
opencv-python
|
9 |
+
supervision==0.6.0
|
10 |
+
pycocotools
|
GroundingDINO/groundingdino.egg-info/top_level.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
groundingdino
|
GroundingDINO/groundingdino/__init__.py
ADDED
File without changes
|
GroundingDINO/groundingdino/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (237 Bytes). View file
|
|
GroundingDINO/groundingdino/config/GroundingDINO_SwinB_cfg.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
batch_size = 1
|
2 |
+
modelname = "groundingdino"
|
3 |
+
backbone = "swin_B_384_22k"
|
4 |
+
position_embedding = "sine"
|
5 |
+
pe_temperatureH = 20
|
6 |
+
pe_temperatureW = 20
|
7 |
+
return_interm_indices = [1, 2, 3]
|
8 |
+
backbone_freeze_keywords = None
|
9 |
+
enc_layers = 6
|
10 |
+
dec_layers = 6
|
11 |
+
pre_norm = False
|
12 |
+
dim_feedforward = 2048
|
13 |
+
hidden_dim = 256
|
14 |
+
dropout = 0.0
|
15 |
+
nheads = 8
|
16 |
+
num_queries = 900
|
17 |
+
query_dim = 4
|
18 |
+
num_patterns = 0
|
19 |
+
num_feature_levels = 4
|
20 |
+
enc_n_points = 4
|
21 |
+
dec_n_points = 4
|
22 |
+
two_stage_type = "standard"
|
23 |
+
two_stage_bbox_embed_share = False
|
24 |
+
two_stage_class_embed_share = False
|
25 |
+
transformer_activation = "relu"
|
26 |
+
dec_pred_bbox_embed_share = True
|
27 |
+
dn_box_noise_scale = 1.0
|
28 |
+
dn_label_noise_ratio = 0.5
|
29 |
+
dn_label_coef = 1.0
|
30 |
+
dn_bbox_coef = 1.0
|
31 |
+
embed_init_tgt = True
|
32 |
+
dn_labelbook_size = 2000
|
33 |
+
max_text_len = 256
|
34 |
+
text_encoder_type = "bert-base-uncased"
|
35 |
+
use_text_enhancer = True
|
36 |
+
use_fusion_layer = True
|
37 |
+
use_checkpoint = True
|
38 |
+
use_transformer_ckpt = True
|
39 |
+
use_text_cross_attention = True
|
40 |
+
text_dropout = 0.0
|
41 |
+
fusion_dropout = 0.0
|
42 |
+
fusion_droppath = 0.1
|
43 |
+
sub_sentence_present = True
|
GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
batch_size = 1
|
2 |
+
modelname = "groundingdino"
|
3 |
+
backbone = "swin_T_224_1k"
|
4 |
+
position_embedding = "sine"
|
5 |
+
pe_temperatureH = 20
|
6 |
+
pe_temperatureW = 20
|
7 |
+
return_interm_indices = [1, 2, 3]
|
8 |
+
backbone_freeze_keywords = None
|
9 |
+
enc_layers = 6
|
10 |
+
dec_layers = 6
|
11 |
+
pre_norm = False
|
12 |
+
dim_feedforward = 2048
|
13 |
+
hidden_dim = 256
|
14 |
+
dropout = 0.0
|
15 |
+
nheads = 8
|
16 |
+
num_queries = 900
|
17 |
+
query_dim = 4
|
18 |
+
num_patterns = 0
|
19 |
+
num_feature_levels = 4
|
20 |
+
enc_n_points = 4
|
21 |
+
dec_n_points = 4
|
22 |
+
two_stage_type = "standard"
|
23 |
+
two_stage_bbox_embed_share = False
|
24 |
+
two_stage_class_embed_share = False
|
25 |
+
transformer_activation = "relu"
|
26 |
+
dec_pred_bbox_embed_share = True
|
27 |
+
dn_box_noise_scale = 1.0
|
28 |
+
dn_label_noise_ratio = 0.5
|
29 |
+
dn_label_coef = 1.0
|
30 |
+
dn_bbox_coef = 1.0
|
31 |
+
embed_init_tgt = True
|
32 |
+
dn_labelbook_size = 2000
|
33 |
+
max_text_len = 256
|
34 |
+
text_encoder_type = "bert-base-uncased"
|
35 |
+
use_text_enhancer = True
|
36 |
+
use_fusion_layer = True
|
37 |
+
use_checkpoint = True
|
38 |
+
use_transformer_ckpt = True
|
39 |
+
use_text_cross_attention = True
|
40 |
+
text_dropout = 0.0
|
41 |
+
fusion_dropout = 0.0
|
42 |
+
fusion_droppath = 0.1
|
43 |
+
sub_sentence_present = True
|
GroundingDINO/groundingdino/config/__init__.py
ADDED
File without changes
|
GroundingDINO/groundingdino/datasets/__init__.py
ADDED
File without changes
|
GroundingDINO/groundingdino/datasets/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (246 Bytes). View file
|
|
GroundingDINO/groundingdino/datasets/__pycache__/transforms.cpython-311.pyc
ADDED
Binary file (17.9 kB). View file
|
|
GroundingDINO/groundingdino/datasets/cocogrounding_eval.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO. Midified by Shilong Liu.
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
|
8 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
9 |
+
"""
|
10 |
+
COCO evaluator that works in distributed mode.
|
11 |
+
|
12 |
+
Mostly copy-paste from https://github.com/pytorch/vision/blob/edfd5a7/references/detection/coco_eval.py
|
13 |
+
The difference is that there is less copy-pasting from pycocotools
|
14 |
+
in the end of the file, as python3 can suppress prints with contextlib
|
15 |
+
"""
|
16 |
+
import contextlib
|
17 |
+
import copy
|
18 |
+
import os
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
import pycocotools.mask as mask_util
|
22 |
+
import torch
|
23 |
+
from pycocotools.coco import COCO
|
24 |
+
from pycocotools.cocoeval import COCOeval
|
25 |
+
|
26 |
+
from groundingdino.util.misc import all_gather
|
27 |
+
|
28 |
+
|
29 |
+
class CocoGroundingEvaluator(object):
|
30 |
+
def __init__(self, coco_gt, iou_types, useCats=True):
|
31 |
+
assert isinstance(iou_types, (list, tuple))
|
32 |
+
coco_gt = copy.deepcopy(coco_gt)
|
33 |
+
self.coco_gt = coco_gt
|
34 |
+
|
35 |
+
self.iou_types = iou_types
|
36 |
+
self.coco_eval = {}
|
37 |
+
for iou_type in iou_types:
|
38 |
+
self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type)
|
39 |
+
self.coco_eval[iou_type].useCats = useCats
|
40 |
+
|
41 |
+
self.img_ids = []
|
42 |
+
self.eval_imgs = {k: [] for k in iou_types}
|
43 |
+
self.useCats = useCats
|
44 |
+
|
45 |
+
def update(self, predictions):
|
46 |
+
img_ids = list(np.unique(list(predictions.keys())))
|
47 |
+
self.img_ids.extend(img_ids)
|
48 |
+
|
49 |
+
for iou_type in self.iou_types:
|
50 |
+
results = self.prepare(predictions, iou_type)
|
51 |
+
|
52 |
+
# suppress pycocotools prints
|
53 |
+
with open(os.devnull, "w") as devnull:
|
54 |
+
with contextlib.redirect_stdout(devnull):
|
55 |
+
coco_dt = COCO.loadRes(self.coco_gt, results) if results else COCO()
|
56 |
+
|
57 |
+
coco_eval = self.coco_eval[iou_type]
|
58 |
+
|
59 |
+
coco_eval.cocoDt = coco_dt
|
60 |
+
coco_eval.params.imgIds = list(img_ids)
|
61 |
+
coco_eval.params.useCats = self.useCats
|
62 |
+
img_ids, eval_imgs = evaluate(coco_eval)
|
63 |
+
|
64 |
+
self.eval_imgs[iou_type].append(eval_imgs)
|
65 |
+
|
66 |
+
def synchronize_between_processes(self):
|
67 |
+
for iou_type in self.iou_types:
|
68 |
+
self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2)
|
69 |
+
create_common_coco_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type])
|
70 |
+
|
71 |
+
def accumulate(self):
|
72 |
+
for coco_eval in self.coco_eval.values():
|
73 |
+
coco_eval.accumulate()
|
74 |
+
|
75 |
+
def summarize(self):
|
76 |
+
for iou_type, coco_eval in self.coco_eval.items():
|
77 |
+
print("IoU metric: {}".format(iou_type))
|
78 |
+
coco_eval.summarize()
|
79 |
+
|
80 |
+
def prepare(self, predictions, iou_type):
|
81 |
+
if iou_type == "bbox":
|
82 |
+
return self.prepare_for_coco_detection(predictions)
|
83 |
+
elif iou_type == "segm":
|
84 |
+
return self.prepare_for_coco_segmentation(predictions)
|
85 |
+
elif iou_type == "keypoints":
|
86 |
+
return self.prepare_for_coco_keypoint(predictions)
|
87 |
+
else:
|
88 |
+
raise ValueError("Unknown iou type {}".format(iou_type))
|
89 |
+
|
90 |
+
def prepare_for_coco_detection(self, predictions):
|
91 |
+
coco_results = []
|
92 |
+
for original_id, prediction in predictions.items():
|
93 |
+
if len(prediction) == 0:
|
94 |
+
continue
|
95 |
+
|
96 |
+
boxes = prediction["boxes"]
|
97 |
+
boxes = convert_to_xywh(boxes).tolist()
|
98 |
+
scores = prediction["scores"].tolist()
|
99 |
+
labels = prediction["labels"].tolist()
|
100 |
+
|
101 |
+
coco_results.extend(
|
102 |
+
[
|
103 |
+
{
|
104 |
+
"image_id": original_id,
|
105 |
+
"category_id": labels[k],
|
106 |
+
"bbox": box,
|
107 |
+
"score": scores[k],
|
108 |
+
}
|
109 |
+
for k, box in enumerate(boxes)
|
110 |
+
]
|
111 |
+
)
|
112 |
+
return coco_results
|
113 |
+
|
114 |
+
def prepare_for_coco_segmentation(self, predictions):
|
115 |
+
coco_results = []
|
116 |
+
for original_id, prediction in predictions.items():
|
117 |
+
if len(prediction) == 0:
|
118 |
+
continue
|
119 |
+
|
120 |
+
scores = prediction["scores"]
|
121 |
+
labels = prediction["labels"]
|
122 |
+
masks = prediction["masks"]
|
123 |
+
|
124 |
+
masks = masks > 0.5
|
125 |
+
|
126 |
+
scores = prediction["scores"].tolist()
|
127 |
+
labels = prediction["labels"].tolist()
|
128 |
+
|
129 |
+
rles = [
|
130 |
+
mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0]
|
131 |
+
for mask in masks
|
132 |
+
]
|
133 |
+
for rle in rles:
|
134 |
+
rle["counts"] = rle["counts"].decode("utf-8")
|
135 |
+
|
136 |
+
coco_results.extend(
|
137 |
+
[
|
138 |
+
{
|
139 |
+
"image_id": original_id,
|
140 |
+
"category_id": labels[k],
|
141 |
+
"segmentation": rle,
|
142 |
+
"score": scores[k],
|
143 |
+
}
|
144 |
+
for k, rle in enumerate(rles)
|
145 |
+
]
|
146 |
+
)
|
147 |
+
return coco_results
|
148 |
+
|
149 |
+
def prepare_for_coco_keypoint(self, predictions):
|
150 |
+
coco_results = []
|
151 |
+
for original_id, prediction in predictions.items():
|
152 |
+
if len(prediction) == 0:
|
153 |
+
continue
|
154 |
+
|
155 |
+
boxes = prediction["boxes"]
|
156 |
+
boxes = convert_to_xywh(boxes).tolist()
|
157 |
+
scores = prediction["scores"].tolist()
|
158 |
+
labels = prediction["labels"].tolist()
|
159 |
+
keypoints = prediction["keypoints"]
|
160 |
+
keypoints = keypoints.flatten(start_dim=1).tolist()
|
161 |
+
|
162 |
+
coco_results.extend(
|
163 |
+
[
|
164 |
+
{
|
165 |
+
"image_id": original_id,
|
166 |
+
"category_id": labels[k],
|
167 |
+
"keypoints": keypoint,
|
168 |
+
"score": scores[k],
|
169 |
+
}
|
170 |
+
for k, keypoint in enumerate(keypoints)
|
171 |
+
]
|
172 |
+
)
|
173 |
+
return coco_results
|
174 |
+
|
175 |
+
|
176 |
+
def convert_to_xywh(boxes):
|
177 |
+
xmin, ymin, xmax, ymax = boxes.unbind(1)
|
178 |
+
return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1)
|
179 |
+
|
180 |
+
|
181 |
+
def merge(img_ids, eval_imgs):
|
182 |
+
all_img_ids = all_gather(img_ids)
|
183 |
+
all_eval_imgs = all_gather(eval_imgs)
|
184 |
+
|
185 |
+
merged_img_ids = []
|
186 |
+
for p in all_img_ids:
|
187 |
+
merged_img_ids.extend(p)
|
188 |
+
|
189 |
+
merged_eval_imgs = []
|
190 |
+
for p in all_eval_imgs:
|
191 |
+
merged_eval_imgs.append(p)
|
192 |
+
|
193 |
+
merged_img_ids = np.array(merged_img_ids)
|
194 |
+
merged_eval_imgs = np.concatenate(merged_eval_imgs, 2)
|
195 |
+
|
196 |
+
# keep only unique (and in sorted order) images
|
197 |
+
merged_img_ids, idx = np.unique(merged_img_ids, return_index=True)
|
198 |
+
merged_eval_imgs = merged_eval_imgs[..., idx]
|
199 |
+
|
200 |
+
return merged_img_ids, merged_eval_imgs
|
201 |
+
|
202 |
+
|
203 |
+
def create_common_coco_eval(coco_eval, img_ids, eval_imgs):
|
204 |
+
img_ids, eval_imgs = merge(img_ids, eval_imgs)
|
205 |
+
img_ids = list(img_ids)
|
206 |
+
eval_imgs = list(eval_imgs.flatten())
|
207 |
+
|
208 |
+
coco_eval.evalImgs = eval_imgs
|
209 |
+
coco_eval.params.imgIds = img_ids
|
210 |
+
coco_eval._paramsEval = copy.deepcopy(coco_eval.params)
|
211 |
+
|
212 |
+
|
213 |
+
#################################################################
|
214 |
+
# From pycocotools, just removed the prints and fixed
|
215 |
+
# a Python3 bug about unicode not defined
|
216 |
+
#################################################################
|
217 |
+
|
218 |
+
|
219 |
+
def evaluate(self):
|
220 |
+
"""
|
221 |
+
Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
|
222 |
+
:return: None
|
223 |
+
"""
|
224 |
+
# tic = time.time()
|
225 |
+
# print('Running per image evaluation...')
|
226 |
+
p = self.params
|
227 |
+
# add backward compatibility if useSegm is specified in params
|
228 |
+
if p.useSegm is not None:
|
229 |
+
p.iouType = "segm" if p.useSegm == 1 else "bbox"
|
230 |
+
print("useSegm (deprecated) is not None. Running {} evaluation".format(p.iouType))
|
231 |
+
# print('Evaluate annotation type *{}*'.format(p.iouType))
|
232 |
+
p.imgIds = list(np.unique(p.imgIds))
|
233 |
+
if p.useCats:
|
234 |
+
p.catIds = list(np.unique(p.catIds))
|
235 |
+
p.maxDets = sorted(p.maxDets)
|
236 |
+
self.params = p
|
237 |
+
|
238 |
+
self._prepare()
|
239 |
+
# loop through images, area range, max detection number
|
240 |
+
catIds = p.catIds if p.useCats else [-1]
|
241 |
+
|
242 |
+
if p.iouType == "segm" or p.iouType == "bbox":
|
243 |
+
computeIoU = self.computeIoU
|
244 |
+
elif p.iouType == "keypoints":
|
245 |
+
computeIoU = self.computeOks
|
246 |
+
self.ious = {
|
247 |
+
(imgId, catId): computeIoU(imgId, catId)
|
248 |
+
for imgId in p.imgIds
|
249 |
+
for catId in catIds}
|
250 |
+
|
251 |
+
evaluateImg = self.evaluateImg
|
252 |
+
maxDet = p.maxDets[-1]
|
253 |
+
evalImgs = [
|
254 |
+
evaluateImg(imgId, catId, areaRng, maxDet)
|
255 |
+
for catId in catIds
|
256 |
+
for areaRng in p.areaRng
|
257 |
+
for imgId in p.imgIds
|
258 |
+
]
|
259 |
+
# this is NOT in the pycocotools code, but could be done outside
|
260 |
+
evalImgs = np.asarray(evalImgs).reshape(len(catIds), len(p.areaRng), len(p.imgIds))
|
261 |
+
self._paramsEval = copy.deepcopy(self.params)
|
262 |
+
# toc = time.time()
|
263 |
+
# print('DONE (t={:0.2f}s).'.format(toc-tic))
|
264 |
+
return p.imgIds, evalImgs
|
265 |
+
|
266 |
+
|
267 |
+
#################################################################
|
268 |
+
# end of straight copy from pycocotools, just removing the prints
|
269 |
+
#################################################################
|
GroundingDINO/groundingdino/datasets/transforms.py
ADDED
@@ -0,0 +1,311 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
|
2 |
+
"""
|
3 |
+
Transforms and data augmentation for both image + bbox.
|
4 |
+
"""
|
5 |
+
import os
|
6 |
+
import random
|
7 |
+
|
8 |
+
import PIL
|
9 |
+
import torch
|
10 |
+
import torchvision.transforms as T
|
11 |
+
import torchvision.transforms.functional as F
|
12 |
+
|
13 |
+
from groundingdino.util.box_ops import box_xyxy_to_cxcywh
|
14 |
+
from groundingdino.util.misc import interpolate
|
15 |
+
|
16 |
+
|
17 |
+
def crop(image, target, region):
|
18 |
+
cropped_image = F.crop(image, *region)
|
19 |
+
|
20 |
+
target = target.copy()
|
21 |
+
i, j, h, w = region
|
22 |
+
|
23 |
+
# should we do something wrt the original size?
|
24 |
+
target["size"] = torch.tensor([h, w])
|
25 |
+
|
26 |
+
fields = ["labels", "area", "iscrowd", "positive_map"]
|
27 |
+
|
28 |
+
if "boxes" in target:
|
29 |
+
boxes = target["boxes"]
|
30 |
+
max_size = torch.as_tensor([w, h], dtype=torch.float32)
|
31 |
+
cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
|
32 |
+
cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
|
33 |
+
cropped_boxes = cropped_boxes.clamp(min=0)
|
34 |
+
area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
|
35 |
+
target["boxes"] = cropped_boxes.reshape(-1, 4)
|
36 |
+
target["area"] = area
|
37 |
+
fields.append("boxes")
|
38 |
+
|
39 |
+
if "masks" in target:
|
40 |
+
# FIXME should we update the area here if there are no boxes?
|
41 |
+
target["masks"] = target["masks"][:, i : i + h, j : j + w]
|
42 |
+
fields.append("masks")
|
43 |
+
|
44 |
+
# remove elements for which the boxes or masks that have zero area
|
45 |
+
if "boxes" in target or "masks" in target:
|
46 |
+
# favor boxes selection when defining which elements to keep
|
47 |
+
# this is compatible with previous implementation
|
48 |
+
if "boxes" in target:
|
49 |
+
cropped_boxes = target["boxes"].reshape(-1, 2, 2)
|
50 |
+
keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
|
51 |
+
else:
|
52 |
+
keep = target["masks"].flatten(1).any(1)
|
53 |
+
|
54 |
+
for field in fields:
|
55 |
+
if field in target:
|
56 |
+
target[field] = target[field][keep]
|
57 |
+
|
58 |
+
if os.environ.get("IPDB_SHILONG_DEBUG", None) == "INFO":
|
59 |
+
# for debug and visualization only.
|
60 |
+
if "strings_positive" in target:
|
61 |
+
target["strings_positive"] = [
|
62 |
+
_i for _i, _j in zip(target["strings_positive"], keep) if _j
|
63 |
+
]
|
64 |
+
|
65 |
+
return cropped_image, target
|
66 |
+
|
67 |
+
|
68 |
+
def hflip(image, target):
|
69 |
+
flipped_image = F.hflip(image)
|
70 |
+
|
71 |
+
w, h = image.size
|
72 |
+
|
73 |
+
target = target.copy()
|
74 |
+
if "boxes" in target:
|
75 |
+
boxes = target["boxes"]
|
76 |
+
boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor(
|
77 |
+
[w, 0, w, 0]
|
78 |
+
)
|
79 |
+
target["boxes"] = boxes
|
80 |
+
|
81 |
+
if "masks" in target:
|
82 |
+
target["masks"] = target["masks"].flip(-1)
|
83 |
+
|
84 |
+
return flipped_image, target
|
85 |
+
|
86 |
+
|
87 |
+
def resize(image, target, size, max_size=None):
|
88 |
+
# size can be min_size (scalar) or (w, h) tuple
|
89 |
+
|
90 |
+
def get_size_with_aspect_ratio(image_size, size, max_size=None):
|
91 |
+
w, h = image_size
|
92 |
+
if max_size is not None:
|
93 |
+
min_original_size = float(min((w, h)))
|
94 |
+
max_original_size = float(max((w, h)))
|
95 |
+
if max_original_size / min_original_size * size > max_size:
|
96 |
+
size = int(round(max_size * min_original_size / max_original_size))
|
97 |
+
|
98 |
+
if (w <= h and w == size) or (h <= w and h == size):
|
99 |
+
return (h, w)
|
100 |
+
|
101 |
+
if w < h:
|
102 |
+
ow = size
|
103 |
+
oh = int(size * h / w)
|
104 |
+
else:
|
105 |
+
oh = size
|
106 |
+
ow = int(size * w / h)
|
107 |
+
|
108 |
+
return (oh, ow)
|
109 |
+
|
110 |
+
def get_size(image_size, size, max_size=None):
|
111 |
+
if isinstance(size, (list, tuple)):
|
112 |
+
return size[::-1]
|
113 |
+
else:
|
114 |
+
return get_size_with_aspect_ratio(image_size, size, max_size)
|
115 |
+
|
116 |
+
size = get_size(image.size, size, max_size)
|
117 |
+
rescaled_image = F.resize(image, size)
|
118 |
+
|
119 |
+
if target is None:
|
120 |
+
return rescaled_image, None
|
121 |
+
|
122 |
+
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size))
|
123 |
+
ratio_width, ratio_height = ratios
|
124 |
+
|
125 |
+
target = target.copy()
|
126 |
+
if "boxes" in target:
|
127 |
+
boxes = target["boxes"]
|
128 |
+
scaled_boxes = boxes * torch.as_tensor(
|
129 |
+
[ratio_width, ratio_height, ratio_width, ratio_height]
|
130 |
+
)
|
131 |
+
target["boxes"] = scaled_boxes
|
132 |
+
|
133 |
+
if "area" in target:
|
134 |
+
area = target["area"]
|
135 |
+
scaled_area = area * (ratio_width * ratio_height)
|
136 |
+
target["area"] = scaled_area
|
137 |
+
|
138 |
+
h, w = size
|
139 |
+
target["size"] = torch.tensor([h, w])
|
140 |
+
|
141 |
+
if "masks" in target:
|
142 |
+
target["masks"] = (
|
143 |
+
interpolate(target["masks"][:, None].float(), size, mode="nearest")[:, 0] > 0.5
|
144 |
+
)
|
145 |
+
|
146 |
+
return rescaled_image, target
|
147 |
+
|
148 |
+
|
149 |
+
def pad(image, target, padding):
|
150 |
+
# assumes that we only pad on the bottom right corners
|
151 |
+
padded_image = F.pad(image, (0, 0, padding[0], padding[1]))
|
152 |
+
if target is None:
|
153 |
+
return padded_image, None
|
154 |
+
target = target.copy()
|
155 |
+
# should we do something wrt the original size?
|
156 |
+
target["size"] = torch.tensor(padded_image.size[::-1])
|
157 |
+
if "masks" in target:
|
158 |
+
target["masks"] = torch.nn.functional.pad(target["masks"], (0, padding[0], 0, padding[1]))
|
159 |
+
return padded_image, target
|
160 |
+
|
161 |
+
|
162 |
+
class ResizeDebug(object):
|
163 |
+
def __init__(self, size):
|
164 |
+
self.size = size
|
165 |
+
|
166 |
+
def __call__(self, img, target):
|
167 |
+
return resize(img, target, self.size)
|
168 |
+
|
169 |
+
|
170 |
+
class RandomCrop(object):
|
171 |
+
def __init__(self, size):
|
172 |
+
self.size = size
|
173 |
+
|
174 |
+
def __call__(self, img, target):
|
175 |
+
region = T.RandomCrop.get_params(img, self.size)
|
176 |
+
return crop(img, target, region)
|
177 |
+
|
178 |
+
|
179 |
+
class RandomSizeCrop(object):
|
180 |
+
def __init__(self, min_size: int, max_size: int, respect_boxes: bool = False):
|
181 |
+
# respect_boxes: True to keep all boxes
|
182 |
+
# False to tolerence box filter
|
183 |
+
self.min_size = min_size
|
184 |
+
self.max_size = max_size
|
185 |
+
self.respect_boxes = respect_boxes
|
186 |
+
|
187 |
+
def __call__(self, img: PIL.Image.Image, target: dict):
|
188 |
+
init_boxes = len(target["boxes"])
|
189 |
+
max_patience = 10
|
190 |
+
for i in range(max_patience):
|
191 |
+
w = random.randint(self.min_size, min(img.width, self.max_size))
|
192 |
+
h = random.randint(self.min_size, min(img.height, self.max_size))
|
193 |
+
region = T.RandomCrop.get_params(img, [h, w])
|
194 |
+
result_img, result_target = crop(img, target, region)
|
195 |
+
if (
|
196 |
+
not self.respect_boxes
|
197 |
+
or len(result_target["boxes"]) == init_boxes
|
198 |
+
or i == max_patience - 1
|
199 |
+
):
|
200 |
+
return result_img, result_target
|
201 |
+
return result_img, result_target
|
202 |
+
|
203 |
+
|
204 |
+
class CenterCrop(object):
|
205 |
+
def __init__(self, size):
|
206 |
+
self.size = size
|
207 |
+
|
208 |
+
def __call__(self, img, target):
|
209 |
+
image_width, image_height = img.size
|
210 |
+
crop_height, crop_width = self.size
|
211 |
+
crop_top = int(round((image_height - crop_height) / 2.0))
|
212 |
+
crop_left = int(round((image_width - crop_width) / 2.0))
|
213 |
+
return crop(img, target, (crop_top, crop_left, crop_height, crop_width))
|
214 |
+
|
215 |
+
|
216 |
+
class RandomHorizontalFlip(object):
|
217 |
+
def __init__(self, p=0.5):
|
218 |
+
self.p = p
|
219 |
+
|
220 |
+
def __call__(self, img, target):
|
221 |
+
if random.random() < self.p:
|
222 |
+
return hflip(img, target)
|
223 |
+
return img, target
|
224 |
+
|
225 |
+
|
226 |
+
class RandomResize(object):
|
227 |
+
def __init__(self, sizes, max_size=None):
|
228 |
+
assert isinstance(sizes, (list, tuple))
|
229 |
+
self.sizes = sizes
|
230 |
+
self.max_size = max_size
|
231 |
+
|
232 |
+
def __call__(self, img, target=None):
|
233 |
+
size = random.choice(self.sizes)
|
234 |
+
return resize(img, target, size, self.max_size)
|
235 |
+
|
236 |
+
|
237 |
+
class RandomPad(object):
|
238 |
+
def __init__(self, max_pad):
|
239 |
+
self.max_pad = max_pad
|
240 |
+
|
241 |
+
def __call__(self, img, target):
|
242 |
+
pad_x = random.randint(0, self.max_pad)
|
243 |
+
pad_y = random.randint(0, self.max_pad)
|
244 |
+
return pad(img, target, (pad_x, pad_y))
|
245 |
+
|
246 |
+
|
247 |
+
class RandomSelect(object):
|
248 |
+
"""
|
249 |
+
Randomly selects between transforms1 and transforms2,
|
250 |
+
with probability p for transforms1 and (1 - p) for transforms2
|
251 |
+
"""
|
252 |
+
|
253 |
+
def __init__(self, transforms1, transforms2, p=0.5):
|
254 |
+
self.transforms1 = transforms1
|
255 |
+
self.transforms2 = transforms2
|
256 |
+
self.p = p
|
257 |
+
|
258 |
+
def __call__(self, img, target):
|
259 |
+
if random.random() < self.p:
|
260 |
+
return self.transforms1(img, target)
|
261 |
+
return self.transforms2(img, target)
|
262 |
+
|
263 |
+
|
264 |
+
class ToTensor(object):
|
265 |
+
def __call__(self, img, target):
|
266 |
+
return F.to_tensor(img), target
|
267 |
+
|
268 |
+
|
269 |
+
class RandomErasing(object):
|
270 |
+
def __init__(self, *args, **kwargs):
|
271 |
+
self.eraser = T.RandomErasing(*args, **kwargs)
|
272 |
+
|
273 |
+
def __call__(self, img, target):
|
274 |
+
return self.eraser(img), target
|
275 |
+
|
276 |
+
|
277 |
+
class Normalize(object):
|
278 |
+
def __init__(self, mean, std):
|
279 |
+
self.mean = mean
|
280 |
+
self.std = std
|
281 |
+
|
282 |
+
def __call__(self, image, target=None):
|
283 |
+
image = F.normalize(image, mean=self.mean, std=self.std)
|
284 |
+
if target is None:
|
285 |
+
return image, None
|
286 |
+
target = target.copy()
|
287 |
+
h, w = image.shape[-2:]
|
288 |
+
if "boxes" in target:
|
289 |
+
boxes = target["boxes"]
|
290 |
+
boxes = box_xyxy_to_cxcywh(boxes)
|
291 |
+
boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32)
|
292 |
+
target["boxes"] = boxes
|
293 |
+
return image, target
|
294 |
+
|
295 |
+
|
296 |
+
class Compose(object):
|
297 |
+
def __init__(self, transforms):
|
298 |
+
self.transforms = transforms
|
299 |
+
|
300 |
+
def __call__(self, image, target):
|
301 |
+
for t in self.transforms:
|
302 |
+
image, target = t(image, target)
|
303 |
+
return image, target
|
304 |
+
|
305 |
+
def __repr__(self):
|
306 |
+
format_string = self.__class__.__name__ + "("
|
307 |
+
for t in self.transforms:
|
308 |
+
format_string += "\n"
|
309 |
+
format_string += " {0}".format(t)
|
310 |
+
format_string += "\n)"
|
311 |
+
return format_string
|
GroundingDINO/groundingdino/models/GroundingDINO/__init__.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Grounding DINO
|
3 |
+
# url: https://github.com/IDEA-Research/GroundingDINO
|
4 |
+
# Copyright (c) 2023 IDEA. All Rights Reserved.
|
5 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
6 |
+
# ------------------------------------------------------------------------
|
7 |
+
# Conditional DETR
|
8 |
+
# Copyright (c) 2021 Microsoft. All Rights Reserved.
|
9 |
+
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
|
10 |
+
# ------------------------------------------------------------------------
|
11 |
+
# Copied from DETR (https://github.com/facebookresearch/detr)
|
12 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
13 |
+
# ------------------------------------------------------------------------
|
14 |
+
|
15 |
+
from .groundingdino import build_groundingdino
|
GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (331 Bytes). View file
|
|
GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/bertwarper.cpython-311.pyc
ADDED
Binary file (11.7 kB). View file
|
|
GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/fuse_modules.cpython-311.pyc
ADDED
Binary file (16.7 kB). View file
|
|
GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/groundingdino.cpython-311.pyc
ADDED
Binary file (20.3 kB). View file
|
|
GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/ms_deform_attn.cpython-311.pyc
ADDED
Binary file (19.5 kB). View file
|
|
GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/transformer.cpython-311.pyc
ADDED
Binary file (37.2 kB). View file
|
|
GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/transformer_vanilla.cpython-311.pyc
ADDED
Binary file (5.89 kB). View file
|
|
GroundingDINO/groundingdino/models/GroundingDINO/__pycache__/utils.cpython-311.pyc
ADDED
Binary file (17.3 kB). View file
|
|
GroundingDINO/groundingdino/models/GroundingDINO/backbone/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .backbone import build_backbone
|
GroundingDINO/groundingdino/models/GroundingDINO/backbone/__pycache__/__init__.cpython-311.pyc
ADDED
Binary file (328 Bytes). View file
|
|