Spaces:
Running
Running
import duckdb | |
import gradio as gr | |
from sentence_transformers import SentenceTransformer | |
from sentence_transformers.models import StaticEmbedding | |
from huggingface_hub import get_token | |
static_embedding = StaticEmbedding.from_model2vec("minishlab/potion-base-8M") | |
model = SentenceTransformer(modules=[static_embedding]) | |
embedding_dimensions = model.get_sentence_embedding_dimension() | |
dataset_name = "ai-blueprint/fineweb-bbc-news-embeddings" | |
embedding_column = "embeddings" | |
embedding_column_float = f"{embedding_column}_float" | |
table_name = "fineweb" | |
duckdb.sql(query=f""" | |
INSTALL vss; | |
LOAD vss; | |
CREATE TABLE {table_name} AS | |
SELECT *, {embedding_column}::float[{embedding_dimensions}] as {embedding_column_float} | |
FROM 'hf://datasets/{dataset_name}/**/*.parquet'; | |
CREATE INDEX my_hnsw_index ON {table_name} USING HNSW ({embedding_column_float}) WITH (metric = 'cosine'); | |
""") | |
def similarity_search(query: str, k: int = 5): | |
embedding = model.encode(query).tolist() | |
df = duckdb.sql( | |
query=f""" | |
SELECT *, array_cosine_distance({embedding_column_float}, {embedding}::FLOAT[{embedding_dimensions}]) as distance | |
FROM {table_name} | |
ORDER BY distance | |
LIMIT {k}; | |
""" | |
).to_df() | |
df = df.drop(columns=[embedding_column, embedding_column_float]) | |
return df | |
with gr.Blocks() as demo: | |
gr.Markdown("""# RAG - retrieve | |
Executes vector search on top of [fineweb-bbc-news-embeddings](https://huggingface.co./datasets/ai-blueprint/fineweb-bbc-news-embeddings) using DuckDB. | |
Part of [AI blueprint](https://github.com/huggingface/ai-blueprint) - a blueprint for AI development, focusing on practical examples of RAG, information extraction, analysis and fine-tuning in the age of LLMs. """) | |
query = gr.Textbox(label="Query") | |
k = gr.Slider(1, 50, value=5, label="Number of results") | |
btn = gr.Button("Search") | |
results = gr.Dataframe(headers=["url", "chunk", "distance"], wrap=True) | |
btn.click(fn=similarity_search, inputs=[query, k], outputs=[results]) | |
demo.launch() |