Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -10,36 +10,41 @@ model = SentenceTransformer(modules=[static_embedding])
|
|
10 |
embedding_dimensions = model.get_sentence_embedding_dimension()
|
11 |
dataset_name = "ai-blueprint/fineweb-bbc-news-embeddings"
|
12 |
embedding_column = "embeddings"
|
|
|
13 |
table_name = "fineweb"
|
14 |
|
15 |
duckdb.sql(query=f"""
|
16 |
INSTALL vss;
|
17 |
LOAD vss;
|
18 |
CREATE TABLE {table_name} AS
|
19 |
-
SELECT *, {embedding_column}::float[{embedding_dimensions}] as {
|
20 |
FROM 'hf://datasets/{dataset_name}/**/*.parquet';
|
21 |
-
CREATE INDEX my_hnsw_index ON {table_name} USING HNSW (
|
22 |
""")
|
23 |
|
24 |
def similarity_search(query: str, k: int = 5):
|
25 |
embedding = model.encode(query).tolist()
|
26 |
-
|
27 |
query=f"""
|
28 |
-
SELECT
|
29 |
FROM {table_name}
|
30 |
ORDER BY distance
|
31 |
LIMIT {k};
|
32 |
"""
|
33 |
).to_df()
|
|
|
|
|
34 |
|
35 |
with gr.Blocks() as demo:
|
36 |
gr.Markdown("""# RAG - retrieve
|
|
|
|
|
37 |
|
38 |
Part of [AI blueprint](https://github.com/huggingface/ai-blueprint) - a blueprint for AI development, focusing on practical examples of RAG, information extraction, analysis and fine-tuning in the age of LLMs. """)
|
39 |
query = gr.Textbox(label="Query")
|
40 |
k = gr.Slider(1, 50, value=5, label="Number of results")
|
41 |
btn = gr.Button("Search")
|
42 |
-
results = gr.Dataframe(headers=["url", "chunk", "distance"])
|
43 |
btn.click(fn=similarity_search, inputs=[query, k], outputs=[results])
|
44 |
|
45 |
|
|
|
10 |
embedding_dimensions = model.get_sentence_embedding_dimension()
|
11 |
dataset_name = "ai-blueprint/fineweb-bbc-news-embeddings"
|
12 |
embedding_column = "embeddings"
|
13 |
+
embedding_column_float = f"{embedding_column}_float"
|
14 |
table_name = "fineweb"
|
15 |
|
16 |
duckdb.sql(query=f"""
|
17 |
INSTALL vss;
|
18 |
LOAD vss;
|
19 |
CREATE TABLE {table_name} AS
|
20 |
+
SELECT *, {embedding_column}::float[{embedding_dimensions}] as {embedding_column_float}
|
21 |
FROM 'hf://datasets/{dataset_name}/**/*.parquet';
|
22 |
+
CREATE INDEX my_hnsw_index ON {table_name} USING HNSW ({embedding_column_float}) WITH (metric = 'cosine');
|
23 |
""")
|
24 |
|
25 |
def similarity_search(query: str, k: int = 5):
|
26 |
embedding = model.encode(query).tolist()
|
27 |
+
df = duckdb.sql(
|
28 |
query=f"""
|
29 |
+
SELECT *, array_cosine_distance({embedding_column_float}, {embedding}::FLOAT[{embedding_dimensions}]) as distance
|
30 |
FROM {table_name}
|
31 |
ORDER BY distance
|
32 |
LIMIT {k};
|
33 |
"""
|
34 |
).to_df()
|
35 |
+
df = df.drop(columns=[embedding_column, embedding_column_float])
|
36 |
+
return df
|
37 |
|
38 |
with gr.Blocks() as demo:
|
39 |
gr.Markdown("""# RAG - retrieve
|
40 |
+
|
41 |
+
Executes vector search on top of [fineweb-bbc-news-embeddings](https://huggingface.co/datasets/ai-blueprint/fineweb-bbc-news-embeddings) using DuckDB.
|
42 |
|
43 |
Part of [AI blueprint](https://github.com/huggingface/ai-blueprint) - a blueprint for AI development, focusing on practical examples of RAG, information extraction, analysis and fine-tuning in the age of LLMs. """)
|
44 |
query = gr.Textbox(label="Query")
|
45 |
k = gr.Slider(1, 50, value=5, label="Number of results")
|
46 |
btn = gr.Button("Search")
|
47 |
+
results = gr.Dataframe(headers=["url", "chunk", "distance"], wrap=True)
|
48 |
btn.click(fn=similarity_search, inputs=[query, k], outputs=[results])
|
49 |
|
50 |
|