localizing-anomalies / dataset.py
ahsanMah's picture
+ porting in msma files
b1602ac
# Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is licensed under a Creative Commons
# Attribution-NonCommercial-ShareAlike 4.0 International License.
# You should have received a copy of the license along with this
# work. If not, see http://creativecommons.org/licenses/by-nc-sa/4.0/
"""Streaming images and labels from datasets created with dataset_tool.py."""
import json
import os
import zipfile
import numpy as np
import PIL.Image
import torch
import dnnlib
try:
import pyspng
except ImportError:
pyspng = None
# ----------------------------------------------------------------------------
# Abstract base class for datasets.
class Dataset(torch.utils.data.Dataset):
def __init__(
self,
name, # Name of the dataset.
raw_shape, # Shape of the raw image data (NCHW).
use_labels=True, # Enable conditioning labels? False = label dimension is zero.
max_size=None, # Artificially limit the size of the dataset. None = no limit. Applied before xflip.
xflip=False, # Artificially double the size of the dataset via x-flips. Applied after max_size.
random_seed=0, # Random seed to use when applying max_size.
cache=False, # Cache images in CPU memory?
):
self._name = name
self._raw_shape = list(raw_shape)
self._use_labels = use_labels
self._cache = cache
self._cached_images = dict() # {raw_idx: np.ndarray, ...}
self._raw_labels = None
self._label_shape = None
# Apply max_size.
self._raw_idx = np.arange(self._raw_shape[0], dtype=np.int64)
if (max_size is not None) and (self._raw_idx.size > max_size):
np.random.RandomState(random_seed % (1 << 31)).shuffle(self._raw_idx)
self._raw_idx = np.sort(self._raw_idx[:max_size])
# Apply xflip.
self._xflip = np.zeros(self._raw_idx.size, dtype=np.uint8)
if xflip:
self._raw_idx = np.tile(self._raw_idx, 2)
self._xflip = np.concatenate([self._xflip, np.ones_like(self._xflip)])
def _get_raw_labels(self):
if self._raw_labels is None:
self._raw_labels = self._load_raw_labels() if self._use_labels else None
if self._raw_labels is None:
self._raw_labels = np.zeros([self._raw_shape[0], 0], dtype=np.float32)
assert isinstance(self._raw_labels, np.ndarray)
assert self._raw_labels.shape[0] == self._raw_shape[0]
assert self._raw_labels.dtype in [np.float32, np.int64]
if self._raw_labels.dtype == np.int64:
assert self._raw_labels.ndim == 1
assert np.all(self._raw_labels >= 0)
return self._raw_labels
def close(self): # to be overridden by subclass
pass
def _load_raw_image(self, raw_idx): # to be overridden by subclass
raise NotImplementedError
def _load_raw_labels(self): # to be overridden by subclass
raise NotImplementedError
def __getstate__(self):
return dict(self.__dict__, _raw_labels=None)
def __del__(self):
try:
self.close()
except:
pass
def __len__(self):
return self._raw_idx.size
def __getitem__(self, idx):
raw_idx = self._raw_idx[idx]
image = self._cached_images.get(raw_idx, None)
if image is None:
image = self._load_raw_image(raw_idx)
if self._cache:
self._cached_images[raw_idx] = image
assert isinstance(image, np.ndarray)
assert list(image.shape) == self._raw_shape[1:]
if self._xflip[idx]:
assert image.ndim == 3 # CHW
image = image[:, :, ::-1]
return image.copy(), self.get_label(idx)
def get_label(self, idx):
label = self._get_raw_labels()[self._raw_idx[idx]]
if label.dtype == np.int64:
onehot = np.zeros(self.label_shape, dtype=np.float32)
onehot[label] = 1
label = onehot
return label.copy()
def get_details(self, idx):
d = dnnlib.EasyDict()
d.raw_idx = int(self._raw_idx[idx])
d.xflip = int(self._xflip[idx]) != 0
d.raw_label = self._get_raw_labels()[d.raw_idx].copy()
return d
@property
def name(self):
return self._name
@property
def image_shape(self): # [CHW]
return list(self._raw_shape[1:])
@property
def num_channels(self):
assert len(self.image_shape) == 3 # CHW
return self.image_shape[0]
@property
def resolution(self):
assert len(self.image_shape) == 3 # CHW
assert self.image_shape[1] == self.image_shape[2]
return self.image_shape[1]
@property
def label_shape(self):
if self._label_shape is None:
raw_labels = self._get_raw_labels()
if raw_labels.dtype == np.int64:
self._label_shape = [int(np.max(raw_labels)) + 1]
else:
self._label_shape = raw_labels.shape[1:]
return list(self._label_shape)
@property
def label_dim(self):
assert len(self.label_shape) == 1
return self.label_shape[0]
@property
def has_labels(self):
return any(x != 0 for x in self.label_shape)
@property
def has_onehot_labels(self):
return self._get_raw_labels().dtype == np.int64
# ----------------------------------------------------------------------------
# Dataset subclass that loads images recursively from the specified directory
# or ZIP file.
class ImageFolderDataset(Dataset):
def __init__(
self,
path, # Path to directory or zip.
resolution=None, # Ensure specific resolution, None = anything goes.
**super_kwargs, # Additional arguments for the Dataset base class.
):
self._path = path
self._zipfile = None
if os.path.isdir(self._path):
self._type = "dir"
self._all_fnames = {
os.path.relpath(os.path.join(root, fname), start=self._path)
for root, _dirs, files in os.walk(self._path)
for fname in files
}
elif self._file_ext(self._path) == ".zip":
self._type = "zip"
self._all_fnames = set(self._get_zipfile().namelist())
else:
raise IOError("Path must point to a directory or zip")
PIL.Image.init()
supported_ext = PIL.Image.EXTENSION.keys() | {".npy"}
self._image_fnames = sorted(
fname
for fname in self._all_fnames
if self._file_ext(fname) in supported_ext
)
if len(self._image_fnames) == 0:
raise IOError("No image files found in the specified path")
name = os.path.splitext(os.path.basename(self._path))[0]
raw_shape = [len(self._image_fnames)] + list(self._load_raw_image(0).shape)
if resolution is not None and (
raw_shape[2] != resolution or raw_shape[3] != resolution
):
raise IOError("Image files do not match the specified resolution")
super().__init__(name=name, raw_shape=raw_shape, **super_kwargs)
@staticmethod
def _file_ext(fname):
return os.path.splitext(fname)[1].lower()
def _get_zipfile(self):
assert self._type == "zip"
if self._zipfile is None:
self._zipfile = zipfile.ZipFile(self._path)
return self._zipfile
def _open_file(self, fname):
if self._type == "dir":
return open(os.path.join(self._path, fname), "rb")
if self._type == "zip":
return self._get_zipfile().open(fname, "r")
return None
def close(self):
try:
if self._zipfile is not None:
self._zipfile.close()
finally:
self._zipfile = None
def __getstate__(self):
return dict(super().__getstate__(), _zipfile=None)
def _load_raw_image(self, raw_idx):
fname = self._image_fnames[raw_idx]
ext = self._file_ext(fname)
with self._open_file(fname) as f:
if ext == ".npy":
image = np.load(f)
image = image.reshape(-1, *image.shape[-2:])
elif ext == ".png" and pyspng is not None:
image = pyspng.load(f.read())
image = image.reshape(*image.shape[:2], -1).transpose(2, 0, 1)
else:
image = np.array(PIL.Image.open(f))
image = image.reshape(*image.shape[:2], -1).transpose(2, 0, 1)
return image
def _load_raw_labels(self):
fname = "dataset.json"
if fname not in self._all_fnames:
return None
with self._open_file(fname) as f:
labels = json.load(f)["labels"]
if labels is None:
return None
labels = dict(labels)
labels = [labels[fname.replace("\\", "/")] for fname in self._image_fnames]
labels = np.array(labels)
labels = labels.astype({1: np.int64, 2: np.float32}[labels.ndim])
return labels
# ----------------------------------------------------------------------------