# Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # This work is licensed under a Creative Commons # Attribution-NonCommercial-ShareAlike 4.0 International License. # You should have received a copy of the license along with this # work. If not, see http://creativecommons.org/licenses/by-nc-sa/4.0/ """Streaming images and labels from datasets created with dataset_tool.py.""" import json import os import zipfile import numpy as np import PIL.Image import torch import dnnlib try: import pyspng except ImportError: pyspng = None # ---------------------------------------------------------------------------- # Abstract base class for datasets. class Dataset(torch.utils.data.Dataset): def __init__( self, name, # Name of the dataset. raw_shape, # Shape of the raw image data (NCHW). use_labels=True, # Enable conditioning labels? False = label dimension is zero. max_size=None, # Artificially limit the size of the dataset. None = no limit. Applied before xflip. xflip=False, # Artificially double the size of the dataset via x-flips. Applied after max_size. random_seed=0, # Random seed to use when applying max_size. cache=False, # Cache images in CPU memory? ): self._name = name self._raw_shape = list(raw_shape) self._use_labels = use_labels self._cache = cache self._cached_images = dict() # {raw_idx: np.ndarray, ...} self._raw_labels = None self._label_shape = None # Apply max_size. self._raw_idx = np.arange(self._raw_shape[0], dtype=np.int64) if (max_size is not None) and (self._raw_idx.size > max_size): np.random.RandomState(random_seed % (1 << 31)).shuffle(self._raw_idx) self._raw_idx = np.sort(self._raw_idx[:max_size]) # Apply xflip. self._xflip = np.zeros(self._raw_idx.size, dtype=np.uint8) if xflip: self._raw_idx = np.tile(self._raw_idx, 2) self._xflip = np.concatenate([self._xflip, np.ones_like(self._xflip)]) def _get_raw_labels(self): if self._raw_labels is None: self._raw_labels = self._load_raw_labels() if self._use_labels else None if self._raw_labels is None: self._raw_labels = np.zeros([self._raw_shape[0], 0], dtype=np.float32) assert isinstance(self._raw_labels, np.ndarray) assert self._raw_labels.shape[0] == self._raw_shape[0] assert self._raw_labels.dtype in [np.float32, np.int64] if self._raw_labels.dtype == np.int64: assert self._raw_labels.ndim == 1 assert np.all(self._raw_labels >= 0) return self._raw_labels def close(self): # to be overridden by subclass pass def _load_raw_image(self, raw_idx): # to be overridden by subclass raise NotImplementedError def _load_raw_labels(self): # to be overridden by subclass raise NotImplementedError def __getstate__(self): return dict(self.__dict__, _raw_labels=None) def __del__(self): try: self.close() except: pass def __len__(self): return self._raw_idx.size def __getitem__(self, idx): raw_idx = self._raw_idx[idx] image = self._cached_images.get(raw_idx, None) if image is None: image = self._load_raw_image(raw_idx) if self._cache: self._cached_images[raw_idx] = image assert isinstance(image, np.ndarray) assert list(image.shape) == self._raw_shape[1:] if self._xflip[idx]: assert image.ndim == 3 # CHW image = image[:, :, ::-1] return image.copy(), self.get_label(idx) def get_label(self, idx): label = self._get_raw_labels()[self._raw_idx[idx]] if label.dtype == np.int64: onehot = np.zeros(self.label_shape, dtype=np.float32) onehot[label] = 1 label = onehot return label.copy() def get_details(self, idx): d = dnnlib.EasyDict() d.raw_idx = int(self._raw_idx[idx]) d.xflip = int(self._xflip[idx]) != 0 d.raw_label = self._get_raw_labels()[d.raw_idx].copy() return d @property def name(self): return self._name @property def image_shape(self): # [CHW] return list(self._raw_shape[1:]) @property def num_channels(self): assert len(self.image_shape) == 3 # CHW return self.image_shape[0] @property def resolution(self): assert len(self.image_shape) == 3 # CHW assert self.image_shape[1] == self.image_shape[2] return self.image_shape[1] @property def label_shape(self): if self._label_shape is None: raw_labels = self._get_raw_labels() if raw_labels.dtype == np.int64: self._label_shape = [int(np.max(raw_labels)) + 1] else: self._label_shape = raw_labels.shape[1:] return list(self._label_shape) @property def label_dim(self): assert len(self.label_shape) == 1 return self.label_shape[0] @property def has_labels(self): return any(x != 0 for x in self.label_shape) @property def has_onehot_labels(self): return self._get_raw_labels().dtype == np.int64 # ---------------------------------------------------------------------------- # Dataset subclass that loads images recursively from the specified directory # or ZIP file. class ImageFolderDataset(Dataset): def __init__( self, path, # Path to directory or zip. resolution=None, # Ensure specific resolution, None = anything goes. **super_kwargs, # Additional arguments for the Dataset base class. ): self._path = path self._zipfile = None if os.path.isdir(self._path): self._type = "dir" self._all_fnames = { os.path.relpath(os.path.join(root, fname), start=self._path) for root, _dirs, files in os.walk(self._path) for fname in files } elif self._file_ext(self._path) == ".zip": self._type = "zip" self._all_fnames = set(self._get_zipfile().namelist()) else: raise IOError("Path must point to a directory or zip") PIL.Image.init() supported_ext = PIL.Image.EXTENSION.keys() | {".npy"} self._image_fnames = sorted( fname for fname in self._all_fnames if self._file_ext(fname) in supported_ext ) if len(self._image_fnames) == 0: raise IOError("No image files found in the specified path") name = os.path.splitext(os.path.basename(self._path))[0] raw_shape = [len(self._image_fnames)] + list(self._load_raw_image(0).shape) if resolution is not None and ( raw_shape[2] != resolution or raw_shape[3] != resolution ): raise IOError("Image files do not match the specified resolution") super().__init__(name=name, raw_shape=raw_shape, **super_kwargs) @staticmethod def _file_ext(fname): return os.path.splitext(fname)[1].lower() def _get_zipfile(self): assert self._type == "zip" if self._zipfile is None: self._zipfile = zipfile.ZipFile(self._path) return self._zipfile def _open_file(self, fname): if self._type == "dir": return open(os.path.join(self._path, fname), "rb") if self._type == "zip": return self._get_zipfile().open(fname, "r") return None def close(self): try: if self._zipfile is not None: self._zipfile.close() finally: self._zipfile = None def __getstate__(self): return dict(super().__getstate__(), _zipfile=None) def _load_raw_image(self, raw_idx): fname = self._image_fnames[raw_idx] ext = self._file_ext(fname) with self._open_file(fname) as f: if ext == ".npy": image = np.load(f) image = image.reshape(-1, *image.shape[-2:]) elif ext == ".png" and pyspng is not None: image = pyspng.load(f.read()) image = image.reshape(*image.shape[:2], -1).transpose(2, 0, 1) else: image = np.array(PIL.Image.open(f)) image = image.reshape(*image.shape[:2], -1).transpose(2, 0, 1) return image def _load_raw_labels(self): fname = "dataset.json" if fname not in self._all_fnames: return None with self._open_file(fname) as f: labels = json.load(f)["labels"] if labels is None: return None labels = dict(labels) labels = [labels[fname.replace("\\", "/")] for fname in self._image_fnames] labels = np.array(labels) labels = labels.astype({1: np.int64, 2: np.float32}[labels.ndim]) return labels # ----------------------------------------------------------------------------