Spaces:
Runtime error
Runtime error
File size: 15,249 Bytes
c2b030e 8476a9b b1602ac 7358cfe b1602ac a186356 b1602ac bf573cf b1602ac 5e7e8e6 b1602ac 6e569fe f22f03c b1602ac 8476a9b b1602ac 6e569fe 8476a9b 6e569fe b1602ac 6e569fe b1602ac 77269e5 b1602ac 8476a9b b1602ac a186356 b1602ac 77269e5 b1602ac 6e569fe b1602ac f22f03c 6e569fe b1602ac a186356 6e569fe a186356 6e569fe a186356 7358cfe f22f03c 7358cfe f22f03c 850e111 7358cfe 850e111 d904b3a 850e111 d904b3a 7358cfe 850e111 7358cfe d904b3a 7358cfe d904b3a 7358cfe d23ef26 7358cfe d23ef26 a186356 b1602ac bf573cf 95e0f92 b1602ac d23ef26 b1602ac 6e569fe b1602ac bf573cf b1602ac a186356 6e569fe a186356 c98586f 7358cfe c98586f a186356 b1602ac c98586f b1602ac f22f03c b1602ac 6e569fe b1602ac 5e7e8e6 b1602ac 5e7e8e6 b1602ac 5e7e8e6 c2b030e b1602ac f22f03c 8476a9b f22f03c 850e111 f44174e 5e7e8e6 b1602ac 5e7e8e6 6e569fe 5e7e8e6 b1602ac 5e7e8e6 b1602ac a186356 8476a9b a186356 5e7e8e6 b1602ac 5e7e8e6 b1602ac 5e7e8e6 a186356 77269e5 b1602ac 8476a9b a186356 f22f03c a186356 b1602ac bf573cf a186356 bf573cf 95e0f92 bf573cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
import datetime
import json
import os
import pickle
from functools import partial, wraps
from pickle import dump, load
from typing import Literal
import click
import numpy as np
import PIL.Image
import torch
from sklearn.mixture import GaussianMixture
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from torch.utils.data import Subset
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
import dnnlib
from dataset import ImageFolderDataset
from flowutils import PatchFlow, sanitize_locals
from networks_edm2 import Precond
DEVICE: Literal["cuda", "cpu"] = "cpu"
model_root = "https://nvlabs-fi-cdn.nvidia.com/edm2/posthoc-reconstructions"
config_presets = {
"edm2-img64-s-fid": f"{model_root}/edm2-img64-s-1073741-0.075.pkl", # fid = 1.58
"edm2-img64-m-fid": f"{model_root}/edm2-img64-m-2147483-0.060.pkl", # fid = 1.43
"edm2-img64-l-fid": f"{model_root}/edm2-img64-l-1073741-0.040.pkl", # fid = 1.33
}
class StandardRGBEncoder:
def __init__(self):
super().__init__()
def encode(self, x): # raw pixels => final pixels
return x.to(torch.float32) / 127.5 - 1
def decode(self, x): # final latents => raw pixels
return (x.to(torch.float32) * 127.5 + 128).clip(0, 255).to(torch.uint8)
class EDMScorer(torch.nn.Module):
def __init__(
self,
net,
stop_ratio=0.8, # Maximum ratio of noise levels to compute
num_steps=10, # Number of noise levels to evaluate.
use_fp16=False, # Execute the underlying model at FP16 precision?
sigma_min=0.002, # Minimum supported noise level.
sigma_max=80, # Maximum supported noise level.
sigma_data=0.5, # Expected standard deviation of the training data.
rho=7, # Time step discretization.
):
super().__init__()
self.config = sanitize_locals(locals(), ignore_keys="net")
self.config["EDMNet"] = dict(net.init_kwargs)
self.use_fp16 = use_fp16
self.sigma_min = sigma_min
self.sigma_max = sigma_max
self.sigma_data = sigma_data
self.net = net.eval()
self.encoder = StandardRGBEncoder()
# Adjust noise levels based on how far we want to accumulate
self.sigma_min = 1e-1
self.sigma_max = sigma_max * stop_ratio
step_indices = torch.arange(num_steps, dtype=torch.float64)
t_steps = (
self.sigma_max ** (1 / rho)
+ step_indices
/ (num_steps - 1)
* (self.sigma_min ** (1 / rho) - self.sigma_max ** (1 / rho))
) ** rho
self.register_buffer("sigma_steps", t_steps.to(torch.float64))
@torch.no_grad
def forward(
self,
x,
force_fp32=False,
):
x = self.encoder.encode(x).to(torch.float32)
batch_scores = []
for sigma in self.sigma_steps:
xhat = self.net(x, sigma, force_fp32=force_fp32)
c_skip = self.net.sigma_data**2 / (sigma**2 + self.net.sigma_data**2)
score = xhat - (c_skip * x)
batch_scores.append(score)
batch_scores = torch.stack(batch_scores, axis=1)
return batch_scores
class ScoreFlow(torch.nn.Module):
def __init__(self, scorenet, device="cpu", **flow_kwargs):
super().__init__()
h = w = scorenet.net.img_resolution
c = scorenet.net.img_channels
num_sigmas = len(scorenet.sigma_steps)
self.flow = PatchFlow((num_sigmas, c, h, w), **flow_kwargs)
self.flow = self.flow.to(device)
self.scorenet = scorenet.to(device).eval().requires_grad_(False)
self.flow.init_weights()
self.config = dict()
self.config.update(**self.scorenet.config)
self.config.update(self.flow.config)
def forward(self, x, **score_kwargs):
x_scores = self.scorenet(x, **score_kwargs)
return self.flow(x_scores)
def build_model_from_config(model_params):
net = Precond(**model_params["EDMNet"])
scorenet = EDMScorer(net=net, **model_params["EDMScorer"])
scoreflow = ScoreFlow(scorenet=scorenet, **model_params["PatchFlow"])
print("Built model from config")
return scoreflow
def build_model_from_pickle(preset="edm2-img64-s-fid", device="cpu"):
netpath = config_presets[preset]
with dnnlib.util.open_url(netpath, verbose=1) as f:
data = pickle.load(f)
net = data["ema"]
model = EDMScorer(net, num_steps=20).to(device)
return model
def quantile_scorer(gmm, X, y=None):
return np.quantile(gmm.score_samples(X), 0.1)
def compute_gmm_likelihood(x_score, gmmdir):
with open(f"{gmmdir}/gmm.pkl", "rb") as f:
clf = load(f)
nll = -clf.score_samples(x_score)
with np.load(f"{gmmdir}/refscores.npz", "rb") as f:
ref_nll = f["arr_0"]
percentile = (ref_nll < nll).mean()
return nll, percentile
@torch.inference_mode
def test_runner(device="cpu"):
# f = "doge.jpg"
f = "goldfish.JPEG"
image = (PIL.Image.open(f)).resize((64, 64), PIL.Image.Resampling.LANCZOS)
image = np.array(image)
image = image.reshape(*image.shape[:2], -1).transpose(2, 0, 1)
x = torch.from_numpy(image).unsqueeze(0).to(device)
model = build_model_from_pickle(device=device)
scores = model(x)
return scores
def test_flow_runner(preset, device="cpu", load_weights=None):
# f = "doge.jpg"
f = "goldfish.JPEG"
image = (PIL.Image.open(f)).resize((64, 64), PIL.Image.Resampling.LANCZOS)
image = np.array(image)
image = image.reshape(*image.shape[:2], -1).transpose(2, 0, 1)
x = torch.from_numpy(image).unsqueeze(0).to(device)
scorenet = build_model_from_pickle(preset)
score_flow = ScoreFlow(scorenet, device=device)
if load_weights is not None:
score_flow.flow.load_state_dict(torch.load(load_weights))
heatmap = score_flow(x)
print(heatmap.shape)
heatmap = score_flow(x).detach().cpu().numpy()
heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min()) * 255
im = PIL.Image.fromarray(heatmap[0, 0])
im.convert("RGB").save(
"heatmap.png",
)
return
@click.group()
def cmdline():
global DEVICE
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
def common_args(func):
@wraps(func)
@click.option(
"--preset",
help="Configuration preset",
metavar="STR",
type=str,
default="edm2-img64-s-fid",
show_default=True,
)
@click.option(
"--dataset_path",
help="Path to the dataset",
metavar="ZIP|DIR",
type=str,
default=None,
)
@click.option(
"--outdir",
help="Where to load/save the results",
metavar="DIR",
type=str,
required=True,
)
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
return wrapper
@cmdline.command("train-gmm")
@click.option(
"--gridsearch",
help="Whether to use a grid search on a number of components to find the best fit",
is_flag=True,
default=False,
)
@common_args
def train_gmm(preset, outdir, gridsearch=False, **kwargs):
outdir = f"{outdir}/{preset}"
score_path = f"{outdir}/imagenette_score_norms.pt"
X = torch.load(score_path).numpy()
print(f"Loaded score norms from: {score_path} - # Samples: {X.shape[0]}")
gm = GaussianMixture(
n_components=7, init_params="kmeans", covariance_type="full", max_iter=100000
)
clf = Pipeline([("scaler", StandardScaler()), ("GMM", gm)])
if gridsearch:
param_grid = dict(
GMM__n_components=range(2, 11, 1),
)
grid = GridSearchCV(
estimator=clf,
param_grid=param_grid,
cv=5,
n_jobs=2,
verbose=1,
scoring=quantile_scorer,
)
grid_result = grid.fit(X)
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
print("-----" * 15)
means = grid_result.cv_results_["mean_test_score"]
stds = grid_result.cv_results_["std_test_score"]
params = grid_result.cv_results_["params"]
for mean, stdev, param in zip(means, stds, params):
print("%f (%f) with: %r" % (mean, stdev, param))
clf = grid.best_estimator_
clf.fit(X)
inlier_nll = -clf.score_samples(X)
print("Saving reference inlier scores ... ")
os.makedirs(outdir, exist_ok=True)
with open(f"{outdir}/refscores.npz", "wb") as f:
np.savez_compressed(f, inlier_nll)
with open(f"{outdir}/gmm.pkl", "wb") as f:
dump(clf, f, protocol=5)
print("Saved GMM pickle.")
@cmdline.command(name="cache-scores")
@click.option(
"--batch_size",
help="Number of samples per batch",
metavar="INT",
type=int,
default=64,
show_default=True,
)
@common_args
def cache_score_norms(preset, dataset_path, outdir, batch_size):
device = DEVICE
dsobj = ImageFolderDataset(path=dataset_path, resolution=64)
refimg, reflabel = dsobj[0]
print(f"Loading dataset from {dataset_path}")
print(
f"Number of Samples: {len(dsobj)} - shape: {refimg.shape}, dtype: {refimg.dtype}, labels {reflabel}"
)
dsloader = torch.utils.data.DataLoader(
dsobj, batch_size=batch_size, num_workers=4, prefetch_factor=2
)
model = build_model_from_pickle(preset=preset, device=device)
score_norms = []
for x, _ in tqdm(dsloader):
s = model(x.to(device))
s = s.square().sum(dim=(2, 3, 4)) ** 0.5
score_norms.append(s.cpu())
score_norms = torch.cat(score_norms, dim=0)
os.makedirs(f"{outdir}/{preset}/", exist_ok=True)
with open(f"{outdir}/{preset}/imagenette_score_norms.pt", "wb") as f:
torch.save(score_norms, f)
print(f"Computed score norms for {score_norms.shape[0]} samples")
@cmdline.command(name="train-flow")
@click.option(
"--epochs",
help="Number of epochs",
metavar="INT",
type=int,
default=10,
show_default=True,
)
@click.option(
"--num_flows",
help="Number of normalizing flow functions in the PatchFlow model",
metavar="INT",
type=int,
default=4,
show_default=True,
)
@click.option(
"--batch_size",
help="Number of samples per batch",
metavar="INT",
type=int,
default=128,
show_default=True,
)
@common_args
def train_flow(dataset_path, preset, outdir, epochs, batch_size, **flow_kwargs):
print("using device:", DEVICE)
device = DEVICE
dsobj = ImageFolderDataset(path=dataset_path, resolution=64)
print(f"Loaded {len(dsobj)} samples from {dataset_path}")
# Subset of training dataset
val_ratio = 0.1
train_len = int((1 - val_ratio) * len(dsobj))
val_len = len(dsobj) - train_len
print(
f"Generating train/test split with ratio={val_ratio} -> {train_len}/{val_len}..."
)
train_ds = Subset(dsobj, range(train_len))
val_ds = Subset(dsobj, range(train_len, train_len + val_len))
trainiter = torch.utils.data.DataLoader(
train_ds, batch_size=batch_size, num_workers=4, prefetch_factor=2, shuffle=True
)
testiter = torch.utils.data.DataLoader(
val_ds, batch_size=batch_size * 2, num_workers=4, prefetch_factor=2
)
scorenet = build_model_from_pickle(preset)
model = ScoreFlow(scorenet, device=device, **flow_kwargs)
opt = torch.optim.AdamW(model.flow.parameters(), lr=3e-4, weight_decay=1e-5)
train_step = partial(
PatchFlow.stochastic_step,
flow_model=model.flow,
opt=opt,
train=True,
n_patches=128,
device=device,
)
eval_step = partial(
PatchFlow.stochastic_step,
flow_model=model.flow,
train=False,
n_patches=256,
device=device,
)
experiment_dir = f"{outdir}/{preset}"
os.makedirs(experiment_dir, exist_ok=True)
timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M")
writer = SummaryWriter(f"{experiment_dir}/logs/{timestamp}")
with open(f"{experiment_dir}/logs/{timestamp}/config.json", "w") as f:
json.dump(model.config, f, sort_keys=True, indent=4)
with open(f"{experiment_dir}/config.json", "w") as f:
json.dump(model.config, f, sort_keys=True, indent=4)
# totaliters = int(epochs * train_len)
pbar = tqdm(range(epochs), desc="Train Loss: ? - Val Loss: ?")
step = 0
for e in pbar:
for x, _ in trainiter:
x = x.to(device)
scores = model.scorenet(x)
if step == 0:
with torch.inference_mode():
val_loss = eval_step(scores, x)
# Log details about model
writer.add_graph(
model.flow.flows,
(
torch.zeros(1, scores.shape[1], device=device),
torch.zeros(
1,
model.flow.position_encoding.cached_penc.shape[-1],
device=device,
),
),
)
train_loss = train_step(scores, x)
if (step + 1) % 10 == 0:
prev_val_loss = val_loss
val_loss = 0.0
with torch.inference_mode():
for i, (x, _) in enumerate(testiter):
x = x.to(device)
scores = model.scorenet(x)
val_loss += eval_step(scores, x)
break
val_loss /= i + 1
writer.add_scalar("loss/val", train_loss, step)
if val_loss < prev_val_loss:
torch.save(model.flow.state_dict(), f"{experiment_dir}/flow.pt")
writer.add_scalar("loss/train", train_loss, step)
pbar.set_description(
f"Step: {step:d} - Train: {train_loss:.3f} - Val: {val_loss:.3f}"
)
step += 1
# Squeeze the juice
best_ckpt = torch.load(f"{experiment_dir}/flow.pt")
model.flow.load_state_dict(best_ckpt)
pbar = tqdm(range(10), desc="(Tuning) Step:? - Loss: ?")
for e in pbar:
for x, _ in testiter:
x = x.to(device)
scores = model.scorenet(x)
train_loss = train_step(scores, x)
writer.add_scalar("loss/train", train_loss, step)
pbar.set_description(f"(Tuning) Step: {step:d} - Loss: {train_loss:.3f}")
step += 1
# Save final model
torch.save(model.flow.state_dict(), f"{experiment_dir}/flow.pt")
writer.close()
# cache_score_norms(
# preset=preset,
# dataset_path="/GROND_STOR/amahmood/datasets/img64/",
# device="cuda",
# )
# train_gmm(
# f"out/msma/{preset}_imagenette_score_norms.pt", outdir=f"out/msma/{preset}"
# )
# s = test_runner(device=device)
# s = s.square().sum(dim=(2, 3, 4)) ** 0.5
# s = s.to("cpu").numpy()
# nll, pct = compute_gmm_likelihood(s, gmmdir=f"out/msma/{preset}/")
# print(f"Anomaly score for image: {nll[0]:.3f} @ {pct*100:.2f} percentile")
if __name__ == "__main__":
cmdline()
|