Spaces:
Runtime error
Runtime error
+ grabbing gmm from hf hub
Browse files+ replacing inference with no_grad
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import json
|
|
|
2 |
from functools import cache
|
3 |
from pickle import load
|
4 |
|
@@ -17,7 +18,7 @@ from msma import ScoreFlow, build_model_from_pickle, config_presets
|
|
17 |
def load_model(modeldir, preset="edm2-img64-s-fid", device="cpu"):
|
18 |
scorenet = build_model_from_pickle(preset=preset)
|
19 |
model = ScoreFlow(scorenet, num_flows=8, device=device)
|
20 |
-
model.flow.load_state_dict(torch.load(f"{modeldir}/
|
21 |
return model
|
22 |
|
23 |
|
@@ -25,29 +26,27 @@ def load_model(modeldir, preset="edm2-img64-s-fid", device="cpu"):
|
|
25 |
def load_model_from_hub(preset, device):
|
26 |
scorenet = build_model_from_pickle(preset)
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
35 |
model_params = json.load(f)
|
36 |
print("Loaded:", model_params)
|
37 |
|
38 |
-
hf_checkpoint =
|
39 |
-
repo_id="ahsanMah/localizing-edm",
|
40 |
-
subfolder=preset,
|
41 |
-
filename="model.safetensors",
|
42 |
-
cache_dir="/tmp/",
|
43 |
-
)
|
44 |
-
|
45 |
-
print("HF SAVE DIR:", hf_checkpoint)
|
46 |
-
|
47 |
model = ScoreFlow(scorenet, device=device, **model_params["PatchFlow"])
|
48 |
model.load_state_dict(load_file(hf_checkpoint), strict=True)
|
49 |
model = model.eval().requires_grad_(False)
|
50 |
-
|
|
|
51 |
|
52 |
|
53 |
@cache
|
@@ -58,6 +57,8 @@ def load_reference_scores(model_dir):
|
|
58 |
|
59 |
|
60 |
def compute_gmm_likelihood(x_score, model_dir):
|
|
|
|
|
61 |
with open(f"{model_dir}/gmm.pkl", "rb") as f:
|
62 |
clf = load(f)
|
63 |
nll = -clf.score(x_score)
|
@@ -94,7 +95,7 @@ def plot_heatmap(img: Image, heatmap: np.array):
|
|
94 |
# fig.tight_layout()
|
95 |
return im
|
96 |
|
97 |
-
|
98 |
def run_inference(model, img):
|
99 |
img = torch.nn.functional.interpolate(img, size=64, mode="bilinear")
|
100 |
score_norms = model.scorenet(img)
|
@@ -114,13 +115,13 @@ def localize_anomalies(input_img, preset="edm2-img64-s-fid", load_from_hub=False
|
|
114 |
img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0)
|
115 |
img = img.float().to(device)
|
116 |
if load_from_hub:
|
117 |
-
model = load_model_from_hub(preset=preset, device=device)
|
118 |
else:
|
|
|
119 |
model = load_model(modeldir="models", preset=preset, device=device)
|
120 |
-
|
121 |
img_likelihood, score_norms = run_inference(model, img)
|
122 |
nll, pct, ref_nll = compute_gmm_likelihood(
|
123 |
-
score_norms, model_dir=
|
124 |
)
|
125 |
|
126 |
outstr = f"Anomaly score: {nll:.3f} / {pct:.2f} percentile"
|
|
|
1 |
import json
|
2 |
+
import os
|
3 |
from functools import cache
|
4 |
from pickle import load
|
5 |
|
|
|
18 |
def load_model(modeldir, preset="edm2-img64-s-fid", device="cpu"):
|
19 |
scorenet = build_model_from_pickle(preset=preset)
|
20 |
model = ScoreFlow(scorenet, num_flows=8, device=device)
|
21 |
+
model.flow.load_state_dict(torch.load(f"{modeldir}/{preset}/flow.pt"))
|
22 |
return model
|
23 |
|
24 |
|
|
|
26 |
def load_model_from_hub(preset, device):
|
27 |
scorenet = build_model_from_pickle(preset)
|
28 |
|
29 |
+
for fname in ['config.json', 'gmm.pkl', 'refscores.npz', 'model.safetensors' ]:
|
30 |
+
cached_fname = hf_hub_download(
|
31 |
+
repo_id="ahsanMah/localizing-edm",
|
32 |
+
subfolder=preset,
|
33 |
+
filename=fname,
|
34 |
+
cache_dir="/tmp/",
|
35 |
+
)
|
36 |
+
modeldir = os.path.dirname(cached_fname)
|
37 |
+
print("HF Cache Dir:", modeldir)
|
38 |
+
|
39 |
+
|
40 |
+
with open(f"{modeldir}/config.json", "rb") as f:
|
41 |
model_params = json.load(f)
|
42 |
print("Loaded:", model_params)
|
43 |
|
44 |
+
hf_checkpoint = f"{modeldir}/model.safetensors"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
model = ScoreFlow(scorenet, device=device, **model_params["PatchFlow"])
|
46 |
model.load_state_dict(load_file(hf_checkpoint), strict=True)
|
47 |
model = model.eval().requires_grad_(False)
|
48 |
+
|
49 |
+
return model, modeldir
|
50 |
|
51 |
|
52 |
@cache
|
|
|
57 |
|
58 |
|
59 |
def compute_gmm_likelihood(x_score, model_dir):
|
60 |
+
|
61 |
+
|
62 |
with open(f"{model_dir}/gmm.pkl", "rb") as f:
|
63 |
clf = load(f)
|
64 |
nll = -clf.score(x_score)
|
|
|
95 |
# fig.tight_layout()
|
96 |
return im
|
97 |
|
98 |
+
@torch.no_grad
|
99 |
def run_inference(model, img):
|
100 |
img = torch.nn.functional.interpolate(img, size=64, mode="bilinear")
|
101 |
score_norms = model.scorenet(img)
|
|
|
115 |
img = torch.from_numpy(img).permute(2, 0, 1).unsqueeze(0)
|
116 |
img = img.float().to(device)
|
117 |
if load_from_hub:
|
118 |
+
model, modeldir = load_model_from_hub(preset=preset, device=device)
|
119 |
else:
|
120 |
+
modeldir = f"models/{preset}"
|
121 |
model = load_model(modeldir="models", preset=preset, device=device)
|
|
|
122 |
img_likelihood, score_norms = run_inference(model, img)
|
123 |
nll, pct, ref_nll = compute_gmm_likelihood(
|
124 |
+
score_norms, model_dir=modeldir
|
125 |
)
|
126 |
|
127 |
outstr = f"Anomaly score: {nll:.3f} / {pct:.2f} percentile"
|
hfapp.py
CHANGED
@@ -13,6 +13,7 @@ from app import (
|
|
13 |
|
14 |
|
15 |
@spaces.GPU
|
|
|
16 |
def run_inference(model, img):
|
17 |
model = model.to('cuda')
|
18 |
img = img.to('cuda')
|
|
|
13 |
|
14 |
|
15 |
@spaces.GPU
|
16 |
+
@torch.no_grad
|
17 |
def run_inference(model, img):
|
18 |
model = model.to('cuda')
|
19 |
img = img.to('cuda')
|
msma.py
CHANGED
@@ -81,7 +81,7 @@ class EDMScorer(torch.nn.Module):
|
|
81 |
|
82 |
self.register_buffer("sigma_steps", t_steps.to(torch.float64))
|
83 |
|
84 |
-
|
85 |
def forward(
|
86 |
self,
|
87 |
x,
|
@@ -110,7 +110,7 @@ class ScoreFlow(torch.nn.Module):
|
|
110 |
self.flow = PatchFlow((num_sigmas, c, h, w), **flow_kwargs)
|
111 |
|
112 |
self.flow = self.flow.to(device)
|
113 |
-
self.scorenet = scorenet.to(device).requires_grad_(False)
|
114 |
self.flow.init_weights()
|
115 |
|
116 |
self.config = dict()
|
@@ -432,14 +432,15 @@ def train_flow(dataset_path, preset, outdir, epochs, **flow_kwargs):
|
|
432 |
# Squeeze the juice
|
433 |
best_ckpt = torch.load(f"{experiment_dir}/flow.pt")
|
434 |
model.flow.load_state_dict(best_ckpt)
|
435 |
-
pbar = tqdm(
|
436 |
-
for
|
437 |
-
x
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
|
|
443 |
|
444 |
# Save final model
|
445 |
torch.save(model.flow.state_dict(), f"{experiment_dir}/flow.pt")
|
|
|
81 |
|
82 |
self.register_buffer("sigma_steps", t_steps.to(torch.float64))
|
83 |
|
84 |
+
@torch.no_grad
|
85 |
def forward(
|
86 |
self,
|
87 |
x,
|
|
|
110 |
self.flow = PatchFlow((num_sigmas, c, h, w), **flow_kwargs)
|
111 |
|
112 |
self.flow = self.flow.to(device)
|
113 |
+
self.scorenet = scorenet.to(device).eval().requires_grad_(False)
|
114 |
self.flow.init_weights()
|
115 |
|
116 |
self.config = dict()
|
|
|
432 |
# Squeeze the juice
|
433 |
best_ckpt = torch.load(f"{experiment_dir}/flow.pt")
|
434 |
model.flow.load_state_dict(best_ckpt)
|
435 |
+
pbar = tqdm(range(10), desc="(Tuning) Step:? - Loss: ?")
|
436 |
+
for e in pbar:
|
437 |
+
for x, _ in testiter:
|
438 |
+
x = x.to(device)
|
439 |
+
scores = model.scorenet(x)
|
440 |
+
train_loss = train_step(scores, x)
|
441 |
+
writer.add_scalar("loss/train", train_loss, step)
|
442 |
+
pbar.set_description(f"(Tuning) Step: {step:d} - Loss: {train_loss:.3f}")
|
443 |
+
step += 1
|
444 |
|
445 |
# Save final model
|
446 |
torch.save(model.flow.state_dict(), f"{experiment_dir}/flow.pt")
|