|
# LoRA |
|
|
|
LoRA (Low-Rank Adaptation) is an extremely powerful method for customizing a base model by training only a small number of parameters. They can be attached to models at runtime. |
|
|
|
For instance, a 50mb LoRA can teach LLaMA an entire new language, a given writing style, or give it instruction-following or chat abilities. |
|
|
|
This is the current state of LoRA integration in the web UI: |
|
|
|
|Loader | Status | |
|
|--------|------| |
|
| Transformers | Full support in 16-bit, `--load-in-8bit`, `--load-in-4bit`, and CPU modes. | |
|
| ExLlama | Single LoRA support. Fast to remove the LoRA afterwards. | |
|
| AutoGPTQ | Single LoRA support. Removing the LoRA requires reloading the entire model.| |
|
| GPTQ-for-LLaMa | Full support with the [monkey patch](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#using-loras-with-gptq-for-llama). | |
|
|
|
## Downloading a LoRA |
|
|
|
The download script can be used. For instance: |
|
|
|
``` |
|
python download-model.py tloen/alpaca-lora-7b |
|
``` |
|
|
|
The files will be saved to `loras/tloen_alpaca-lora-7b`. |
|
|
|
## Using the LoRA |
|
|
|
The `--lora` command-line flag can be used. Examples: |
|
|
|
``` |
|
python server.py --model llama-7b-hf --lora tloen_alpaca-lora-7b |
|
python server.py --model llama-7b-hf --lora tloen_alpaca-lora-7b --load-in-8bit |
|
python server.py --model llama-7b-hf --lora tloen_alpaca-lora-7b --load-in-4bit |
|
python server.py --model llama-7b-hf --lora tloen_alpaca-lora-7b --cpu |
|
``` |
|
|
|
Instead of using the `--lora` command-line flag, you can also select the LoRA in the "Parameters" tab of the interface. |
|
|
|
## Prompt |
|
For the Alpaca LoRA in particular, the prompt must be formatted like this: |
|
|
|
``` |
|
Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
### Instruction: |
|
Write a Python script that generates text using the transformers library. |
|
### Response: |
|
``` |
|
|
|
Sample output: |
|
|
|
``` |
|
Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
### Instruction: |
|
Write a Python script that generates text using the transformers library. |
|
### Response: |
|
|
|
import transformers |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") |
|
model = AutoModelForCausalLM.from_pretrained("bert-base-uncased") |
|
texts = ["Hello world", "How are you"] |
|
for sentence in texts: |
|
sentence = tokenizer(sentence) |
|
print(f"Generated {len(sentence)} tokens from '{sentence}'") |
|
output = model(sentences=sentence).predict() |
|
print(f"Predicted {len(output)} tokens for '{sentence}':\n{output}") |
|
``` |
|
|
|
## Training a LoRA |
|
|
|
You can train your own LoRAs from the `Training` tab. See [Training LoRAs](Training-LoRAs.md) for details. |
|
|