mini-omni-s2s / slam_llm /utils /deepspeed_utils.py
xcczach's picture
Upload 73 files
35c1cfd verified
raw
history blame
24.5 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
import os
import time
import yaml
from contextlib import nullcontext
from pathlib import Path
from pkg_resources import packaging
import functools
import hydra
import torch
import torch.cuda.nccl as nccl
import torch.distributed as dist
from omegaconf import DictConfig
from tqdm import tqdm
from transformers import LlamaTokenizer
from typing import Any, Callable, List, Optional
from textwrap import dedent
from hydra import version
from hydra.main import _UNSPECIFIED_, _get_rerun_conf
from hydra._internal.deprecation_warning import deprecation_warning
from hydra._internal.utils import _run_hydra, get_args_parser
from hydra.types import TaskFunction
from hydra.core.utils import _flush_loggers, configure_log
from slam_llm.utils.checkpoint_handler import (
save_model_checkpoint,
save_model_checkpoint_deepspeed,
save_model_and_optimizer_sharded,
save_optimizer_checkpoint,
save_model_checkpoint_peft,
save_model_checkpoint_peft_full_shard,
)
from slam_llm.policies import fpSixteen, bfSixteen_mixed, get_llama_wrapper
from slam_llm.utils.memory_utils import MemoryTrace
from slam_llm.utils.metric import compute_accuracy
import wandb
import logging
logger = logging.getLogger(__name__)
# For deepspeed --local_rank argument
def deepspeed_main_wrapper(
config_path: Optional[str] = _UNSPECIFIED_,
config_name: Optional[str] = None,
version_base: Optional[str] = _UNSPECIFIED_,
) -> Callable[[TaskFunction], Any]:
"""
:param config_path: The config path, a directory where Hydra will search for
config files. This path is added to Hydra's searchpath.
Relative paths are interpreted relative to the declaring python
file. Alternatively, you can use the prefix `pkg://` to specify
a python package to add to the searchpath.
If config_path is None no directory is added to the Config search path.
:param config_name: The name of the config (usually the file name without the .yaml extension)
"""
version.setbase(version_base)
if config_path is _UNSPECIFIED_:
if version.base_at_least("1.2"):
config_path = None
elif version_base is _UNSPECIFIED_:
url = "https://hydra.cc/docs/1.2/upgrades/1.0_to_1.1/changes_to_hydra_main_config_path"
deprecation_warning(
message=dedent(
f"""
config_path is not specified in @hydra.main().
See {url} for more information."""
),
stacklevel=2,
)
config_path = "."
else:
config_path = "."
def main_decorator(task_function: TaskFunction) -> Callable[[], None]:
@functools.wraps(task_function)
def decorated_main(cfg_passthrough: Optional[DictConfig] = None) -> Any:
if cfg_passthrough is not None:
return task_function(cfg_passthrough)
else:
args_parser = get_args_parser()
args_parser.add_argument("--local_rank", type=int, default=-1)
args = args_parser.parse_args()
if args.experimental_rerun is not None:
cfg = _get_rerun_conf(args.experimental_rerun, args.overrides)
task_function(cfg)
_flush_loggers()
else:
# no return value from run_hydra() as it may sometime actually run the task_function
# multiple times (--multirun)
_run_hydra(
args=args,
args_parser=args_parser,
task_function=task_function,
config_path=config_path,
config_name=config_name,
)
return decorated_main
return main_decorator
def set_tokenizer_params(tokenizer: LlamaTokenizer):
tokenizer.pad_token_id = 0
tokenizer.padding_side = "left"
# Converting Bytes to Megabytes
def byte2mb(x):
return int(x / 2**20)
def train(
model,
train_dataloader,
eval_dataloader,
tokenizer,
gradient_accumulation_steps,
train_config,
log_config,
local_rank=None,
rank=None,
):
"""
Trains the model on the given dataloader
Args:
model: The model to be trained
train_dataloader: The dataloader containing the training data
optimizer: The optimizer used for training
lr_scheduler: The learning rate scheduler
gradient_accumulation_steps: The number of steps to accumulate gradients before performing a backward/update operation
num_epochs: The number of epochs to train for
local_rank: The rank of the current node in a distributed setting
train_config: The training configuration
log_config: The logging configuration
eval_dataloader: The dataloader containing the eval data
tokenizer: tokenizer used in the eval for decoding the predicitons
Returns: results dictionary containing average training and validation perplexity and loss
"""
# Create a gradient scaler for fp16
# if train_config.use_fp16 and train_config.enable_fsdp:
# scaler = ShardedGradScaler()
# elif train_config.use_fp16 and not train_config.enable_fsdp:
# scaler = torch.cuda.amp.GradScaler()
if train_config.enable_ddp:
world_size = int(os.environ["WORLD_SIZE"])
autocast = torch.cuda.amp.autocast if train_config.use_fp16 else nullcontext
train_prep = []
train_loss = []
train_acc = []
val_prep = []
val_loss = []
val_acc = []
epoch_times = []
checkpoint_times = []
results = {}
best_val_loss = float("inf")
best_val_acc = 0.0
for epoch in range(train_config.num_epochs):
epoch_start_time = time.perf_counter()
with MemoryTrace() as memtrace: # track the memory usage
model.train()
total_loss = 0.0
total_acc = 0.0
total_length = len(train_dataloader) // gradient_accumulation_steps
pbar = tqdm(
colour="blue",
desc=f"Training Epoch: {epoch+1}",
total=total_length,
dynamic_ncols=True,
)
for step, batch in enumerate(train_dataloader):
for key in batch.keys():
batch[key] = (
batch[key].to(local_rank).half()
if isinstance(batch[key], torch.Tensor)
and batch[key].dtype == torch.float32
else (
batch[key].to(local_rank)
if isinstance(batch[key], torch.Tensor)
else batch[key]
)
)
# with autocast():
outputs, *rest = model(**batch)
acc = rest[0] if rest else -1
loss = outputs.loss
loss = loss / gradient_accumulation_steps
acc = acc / gradient_accumulation_steps
if log_config.use_wandb and step % log_config.log_interval == 0:
if train_config.enable_fsdp or train_config.enable_ddp:
if rank == 0:
wandb.log(
{
"train_inner/train_inner_loss": loss,
"train_inner/train_inner_accuracy": acc,
},
step=(epoch * total_length + step),
)
else:
wandb.log(
{
"train_inner/train_inner_loss": loss,
"train_inner/train_inner_accuracy": acc,
},
step=(epoch * total_length + step),
)
total_loss += loss.detach().float()
total_acc += acc
# deepspeed should handle gradient accumulate
model.backward(loss)
model.step()
if (step + 1) % gradient_accumulation_steps == 0 or step == len(
train_dataloader
) - 1:
pbar.update(1)
pbar.set_description(
f"Training Epoch: {epoch+1}/{train_config.num_epochs}, step {step}/{len(train_dataloader)} completed (loss: {loss.detach().float()}, acc: {acc})"
)
if (
(epoch * total_length + step + 1) % train_config.validation_interval
== 0
and train_config.run_validation
):
eval_ppl, eval_epoch_loss, *rest = evaluation(
model, train_config, eval_dataloader, local_rank, tokenizer
)
eval_epoch_acc = rest[0] if rest else -1
checkpoint_start_time = time.perf_counter()
if train_config.save_model and (eval_epoch_loss < best_val_loss):
checkpoint_name = f"{train_config.model_name}_epoch_{str(epoch+1)}_step_{step+1}"
save_model_checkpoint_deepspeed(
model, train_config, checkpoint_name
)
checkpoint_end_time = time.perf_counter() - checkpoint_start_time
checkpoint_times.append(checkpoint_end_time)
if eval_epoch_loss < best_val_loss:
best_val_loss = eval_epoch_loss
if rank == 0:
logger.info(
f"best eval loss on epoch {epoch+1} is {best_val_loss}"
)
val_loss.append(eval_epoch_loss)
val_prep.append(eval_ppl)
if rest:
if eval_epoch_acc > best_val_acc:
best_val_acc = eval_epoch_acc
if rank == 0:
logger.info(
f"best eval acc on epoch {epoch+1} is {best_val_acc}"
)
val_acc.append(rest[0])
else:
val_acc.append(-1)
if log_config.use_wandb:
if rank == 0:
wandb.log(
{
"valid/val_epoch_loss": eval_epoch_loss,
"valid/val_perplexity": eval_ppl,
"valid/best_val_loss": best_val_loss,
"valid/val_accuracy": val_acc[-1],
"valid/val_best_accuracy": best_val_acc,
}
)
if train_config.run_test_during_validation:
if rank == 0:
logger.info("=====================================")
logger.info(
f"Test the file {train_config.run_test_during_validation_file} during validation:"
)
with autocast():
logger.info(
model.inference(
train_config.run_test_during_validation_file,
train_config.run_test_during_validation_prompt,
)
)
logger.info("=====================================")
dist.barrier()
pbar.close()
epoch_end_time = time.perf_counter() - epoch_start_time
epoch_times.append(epoch_end_time)
# Reducing total_loss across all devices if there's more than one CUDA device
if torch.cuda.device_count() > 1 and (
train_config.enable_fsdp or train_config.enable_ddp
):
dist.all_reduce(total_loss, op=dist.ReduceOp.SUM)
dist.all_reduce(total_acc, op=dist.ReduceOp.SUM)
train_epoch_loss = total_loss / len(train_dataloader)
train_epoch_acc = total_acc / len(train_dataloader)
if train_config.enable_fsdp or train_config.enable_ddp:
train_epoch_loss = train_epoch_loss / world_size
train_epoch_acc = train_epoch_acc / world_size
train_perplexity = torch.exp(train_epoch_loss)
train_prep.append(train_perplexity)
train_loss.append(train_epoch_loss)
train_acc.append(train_epoch_acc)
if log_config.use_wandb:
if train_config.enable_fsdp or train_config.enable_ddp:
if rank == 0:
wandb.log(
{
"train/train_perplexity": train_perplexity,
"train/train_epoch_loss": train_epoch_loss,
"train/train_epoch_acc": train_epoch_acc,
}
)
else:
wandb.log(
{
"train/train_perplexity": train_perplexity,
"train/train_epoch_loss": train_epoch_loss,
"train/train_epoch_acc": train_epoch_acc,
}
)
if rank == 0:
logger.info(
f"Epoch {epoch+1}: train_perplexity={train_perplexity:.4f}, train_epoch_loss={train_epoch_loss:.4f}, epoch time {epoch_end_time}s"
)
if rank == 0:
logger.info(f"Max CUDA memory allocated was {memtrace.peak} GB")
logger.info(f"Max CUDA memory reserved was {memtrace.max_reserved} GB")
logger.info(f"Peak active CUDA memory was {memtrace.peak_active_gb} GB")
logger.info(f"Cuda Malloc retires : {memtrace.cuda_malloc_retires}")
logger.info(
f"CPU Total Peak Memory consumed during the train (max): {memtrace.cpu_peaked + memtrace.cpu_begin} GB"
)
# Update the learning rate as needed
# lr_scheduler.step()
avg_epoch_time = sum(epoch_times) / len(epoch_times)
avg_checkpoint_time = (
sum(checkpoint_times) / len(checkpoint_times)
if len(checkpoint_times) > 0
else 0
)
avg_train_prep = sum(train_prep) / len(train_prep)
avg_train_loss = sum(train_loss) / len(train_loss)
avg_train_acc = sum(train_acc) / len(train_acc)
if train_config.run_validation:
avg_eval_prep = sum(val_prep) / len(val_prep)
avg_eval_loss = sum(val_loss) / len(val_loss)
avg_eval_acc = sum(val_acc) / len(val_acc)
results["avg_train_prep"] = avg_train_prep
results["avg_train_loss"] = avg_train_loss
results["avg_train_acc"] = avg_train_acc
if train_config.run_validation:
results["avg_eval_prep"] = avg_eval_prep
results["avg_eval_loss"] = avg_eval_loss
results["avg_eval_acc"] = avg_eval_acc
results["avg_epoch_time"] = avg_epoch_time
results["avg_checkpoint_time"] = avg_checkpoint_time
# saving the training params including fsdp setting for reference.
# if (train_config.enable_fsdp or train_config.enable_ddp)and not train_config.use_peft:
# save_train_params(train_config, fsdp_config, rank)
return results
def evaluation(model, train_config, eval_dataloader, local_rank, tokenizer):
"""
Evaluates the model on the given dataloader
Args:
model: The model to evaluate
eval_dataloader: The dataloader containing the evaluation data
local_rank: The rank of the current node in a distributed setting
tokenizer: The tokenizer used to decode predictions
Returns: eval_ppl, eval_epoch_loss
"""
world_size = int(os.environ["WORLD_SIZE"])
model.eval()
eval_preds = []
eval_loss = 0.0 # Initialize evaluation loss
eval_acc = 0.0
autocast = (
torch.cuda.amp.autocast if train_config.use_fp16 else nullcontext
) # (Fix:MZY): fix expected scalar type mismatch in norm
with MemoryTrace() as memtrace:
total_length = len(eval_dataloader)
pbar = tqdm(
colour="green",
desc=f"Evaluating Epoch",
total=total_length,
dynamic_ncols=True,
)
for step, batch in enumerate(eval_dataloader):
for key in batch.keys():
batch[key] = (
batch[key].to(local_rank).half()
if isinstance(batch[key], torch.Tensor) and batch[key].dtype==torch.float32
else (
batch[key].to(local_rank) if isinstance(batch[key], torch.Tensor) else batch[key]
)
)
# Ensure no gradients are computed for this scope to save memory
with torch.no_grad():
# Forward pass and compute loss
with autocast(): # (Fix:MZY): fix expected scalar type mismatch in norm
outputs, *rest = model(**batch)
acc = rest[0] if rest else -1
loss = outputs.loss
eval_loss += loss.detach().float()
eval_acc += acc
# Decode predictions and add to evaluation predictions list
preds = torch.argmax(outputs.logits, -1)
eval_preds.extend(
tokenizer.batch_decode(
preds.detach().cpu().numpy(), skip_special_tokens=True
)
)
pbar.update(1)
pbar.set_description(
f"step: {step+1}/{total_length}, eval_loss: {eval_loss/(step+1):.4f}, eval_acc: {eval_acc/(step+1):.4f}"
)
# If there's more than one CUDA device, reduce evaluation loss across all devices
if (
torch.cuda.device_count() > 1
):
dist.all_reduce(eval_loss, op=dist.ReduceOp.SUM)
dist.all_reduce(eval_acc, op=dist.ReduceOp.SUM)
# Compute average loss and perplexity
eval_epoch_loss = eval_loss / len(eval_dataloader)
eval_epoch_acc = eval_acc / len(eval_dataloader)
eval_epoch_loss = eval_epoch_loss / world_size
eval_epoch_acc = eval_epoch_acc / world_size
eval_ppl = torch.exp(eval_epoch_loss)
# Print evaluation metrics
if local_rank == 0:
logger.info(f" {eval_ppl=} {eval_epoch_loss=} {eval_epoch_acc=}")
model.train()
return eval_ppl, eval_epoch_loss, eval_epoch_acc
def freeze_transformer_layers(model, num_layer):
for i, layer in enumerate(model.model.layers):
if i < num_layer:
for param in layer.parameters():
param.requires_grad = False
def check_frozen_layers_peft_model(model):
for i, layer in enumerate(model.base_model.model.model.layers):
for name, param in layer.named_parameters():
logger.info(
f"Layer {i}, parameter {name}: requires_grad = {param.requires_grad}"
)
def setup():
"""Initialize the process group for distributed training"""
dist.init_process_group("nccl")
def setup_environ_flags(rank):
"""Set environment flags for debugging purposes"""
os.environ["TORCH_SHOW_CPP_STACKTRACES"] = str(1)
os.environ["NCCL_ASYNC_ERROR_HANDLING"] = str(1)
# os.environ["TORCH_DISTRIBUTED_DEBUG"] = "DETAIL"
# This flag will help with CUDA memory fragmentations that can lead into OOM in some cases.
# Note this is only availble in PyTorch Nighlies (as of July 30 2023)
# os.environ['PYTORCH_CUDA_ALLOC_CONF']='expandable_segments:True'
if rank == 0:
logger.info(f"--> Running with torch dist debug set to detail")
def cleanup():
"""Clean up the process group after training"""
dist.destroy_process_group()
def clear_gpu_cache(rank=None):
"""Clear the GPU cache for all ranks"""
if rank == 0:
logger.info(f"Clearing GPU cache for all ranks")
torch.cuda.empty_cache()
def get_parameter_dtypes(model):
"""Get the data types of model parameters"""
parameter_dtypes = {}
for name, parameter in model.named_parameters():
parameter_dtypes[name] = parameter.dtype
return parameter_dtypes
def print_model_size(model, config, rank: int = 0) -> None:
"""
log model name, the number of trainable parameters and initialization time.
Args:
model: The PyTorch model.
model_name (str): Name of the model.
init_time_start (float): Initialization start time.
init_time_end (float): Initialization end time.
rank (int, optional): Current process's rank. Defaults to 0.
"""
if rank == 0:
logger.info(f"--> Model {config.model_name}")
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info(
f"--> {config.model_name} has {total_params / 1e6} Million params\n"
)
def print_module_size(module, module_name, rank: int = 0) -> None:
"""
Print module name, the number of trainable parameters and initialization time.
Args:
module: The PyTorch module.
module_name (str): Name of the model.
rank (int, optional): Current process's rank. Defaults to 0.
"""
if rank == 0:
logger.info(f"--> Module {module_name}")
total_params = sum(p.numel() for p in module.parameters() if p.requires_grad)
logger.info(f"--> {module_name} has {total_params / 1e6} Million params\n")
def save_train_params(train_config, fsdp_config, rank):
"""
This function saves the train_config and FSDP config into a train_params.yaml.
This will be used by converter script in the inference folder to fetch the HF model name or path.
It also would be hepful as a log for future references.
"""
# Convert the train_config and fsdp_config objects to dictionaries,
# converting all values to strings to ensure they can be serialized into a YAML file
train_config_dict = {
k: str(v) for k, v in vars(train_config).items() if not k.startswith("__")
}
fsdp_config_dict = {
k: str(v) for k, v in vars(fsdp_config).items() if not k.startswith("__")
}
# Merge the two dictionaries into one
train_params_dict = {**train_config_dict, **fsdp_config_dict}
# Construct the folder name (follwoing FSDP checkpointing style) using properties of the train_config object
folder_name = (
train_config.dist_checkpoint_root_folder
+ "/"
+ train_config.dist_checkpoint_folder
+ "-"
+ train_config.model_name
)
save_dir = Path.cwd() / folder_name
# If the directory does not exist, create it
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# Convert the dictionary to a YAML string
config_yaml = yaml.dump(train_params_dict, indent=4)
file_name = os.path.join(save_dir, "train_params.yaml")
# Check if there's a directory with the same name as the file
if os.path.isdir(file_name):
logger.info(f"Error: {file_name} is a directory, not a file.")
else:
# Write the YAML string to the file
with open(file_name, "w") as f:
f.write(config_yaml)
if rank == 0:
logger.info(f"training params are saved in {file_name}")