# Copyright (c) Meta Platforms, Inc. and affiliates. # This software may be used and distributed according to the terms of the Llama 2 Community License Agreement. import os import time import yaml from contextlib import nullcontext from pathlib import Path from pkg_resources import packaging import functools import hydra import torch import torch.cuda.nccl as nccl import torch.distributed as dist from omegaconf import DictConfig from tqdm import tqdm from transformers import LlamaTokenizer from typing import Any, Callable, List, Optional from textwrap import dedent from hydra import version from hydra.main import _UNSPECIFIED_, _get_rerun_conf from hydra._internal.deprecation_warning import deprecation_warning from hydra._internal.utils import _run_hydra, get_args_parser from hydra.types import TaskFunction from hydra.core.utils import _flush_loggers, configure_log from slam_llm.utils.checkpoint_handler import ( save_model_checkpoint, save_model_checkpoint_deepspeed, save_model_and_optimizer_sharded, save_optimizer_checkpoint, save_model_checkpoint_peft, save_model_checkpoint_peft_full_shard, ) from slam_llm.policies import fpSixteen, bfSixteen_mixed, get_llama_wrapper from slam_llm.utils.memory_utils import MemoryTrace from slam_llm.utils.metric import compute_accuracy import wandb import logging logger = logging.getLogger(__name__) # For deepspeed --local_rank argument def deepspeed_main_wrapper( config_path: Optional[str] = _UNSPECIFIED_, config_name: Optional[str] = None, version_base: Optional[str] = _UNSPECIFIED_, ) -> Callable[[TaskFunction], Any]: """ :param config_path: The config path, a directory where Hydra will search for config files. This path is added to Hydra's searchpath. Relative paths are interpreted relative to the declaring python file. Alternatively, you can use the prefix `pkg://` to specify a python package to add to the searchpath. If config_path is None no directory is added to the Config search path. :param config_name: The name of the config (usually the file name without the .yaml extension) """ version.setbase(version_base) if config_path is _UNSPECIFIED_: if version.base_at_least("1.2"): config_path = None elif version_base is _UNSPECIFIED_: url = "https://hydra.cc/docs/1.2/upgrades/1.0_to_1.1/changes_to_hydra_main_config_path" deprecation_warning( message=dedent( f""" config_path is not specified in @hydra.main(). See {url} for more information.""" ), stacklevel=2, ) config_path = "." else: config_path = "." def main_decorator(task_function: TaskFunction) -> Callable[[], None]: @functools.wraps(task_function) def decorated_main(cfg_passthrough: Optional[DictConfig] = None) -> Any: if cfg_passthrough is not None: return task_function(cfg_passthrough) else: args_parser = get_args_parser() args_parser.add_argument("--local_rank", type=int, default=-1) args = args_parser.parse_args() if args.experimental_rerun is not None: cfg = _get_rerun_conf(args.experimental_rerun, args.overrides) task_function(cfg) _flush_loggers() else: # no return value from run_hydra() as it may sometime actually run the task_function # multiple times (--multirun) _run_hydra( args=args, args_parser=args_parser, task_function=task_function, config_path=config_path, config_name=config_name, ) return decorated_main return main_decorator def set_tokenizer_params(tokenizer: LlamaTokenizer): tokenizer.pad_token_id = 0 tokenizer.padding_side = "left" # Converting Bytes to Megabytes def byte2mb(x): return int(x / 2**20) def train( model, train_dataloader, eval_dataloader, tokenizer, gradient_accumulation_steps, train_config, log_config, local_rank=None, rank=None, ): """ Trains the model on the given dataloader Args: model: The model to be trained train_dataloader: The dataloader containing the training data optimizer: The optimizer used for training lr_scheduler: The learning rate scheduler gradient_accumulation_steps: The number of steps to accumulate gradients before performing a backward/update operation num_epochs: The number of epochs to train for local_rank: The rank of the current node in a distributed setting train_config: The training configuration log_config: The logging configuration eval_dataloader: The dataloader containing the eval data tokenizer: tokenizer used in the eval for decoding the predicitons Returns: results dictionary containing average training and validation perplexity and loss """ # Create a gradient scaler for fp16 # if train_config.use_fp16 and train_config.enable_fsdp: # scaler = ShardedGradScaler() # elif train_config.use_fp16 and not train_config.enable_fsdp: # scaler = torch.cuda.amp.GradScaler() if train_config.enable_ddp: world_size = int(os.environ["WORLD_SIZE"]) autocast = torch.cuda.amp.autocast if train_config.use_fp16 else nullcontext train_prep = [] train_loss = [] train_acc = [] val_prep = [] val_loss = [] val_acc = [] epoch_times = [] checkpoint_times = [] results = {} best_val_loss = float("inf") best_val_acc = 0.0 for epoch in range(train_config.num_epochs): epoch_start_time = time.perf_counter() with MemoryTrace() as memtrace: # track the memory usage model.train() total_loss = 0.0 total_acc = 0.0 total_length = len(train_dataloader) // gradient_accumulation_steps pbar = tqdm( colour="blue", desc=f"Training Epoch: {epoch+1}", total=total_length, dynamic_ncols=True, ) for step, batch in enumerate(train_dataloader): for key in batch.keys(): batch[key] = ( batch[key].to(local_rank).half() if isinstance(batch[key], torch.Tensor) and batch[key].dtype == torch.float32 else ( batch[key].to(local_rank) if isinstance(batch[key], torch.Tensor) else batch[key] ) ) # with autocast(): outputs, *rest = model(**batch) acc = rest[0] if rest else -1 loss = outputs.loss loss = loss / gradient_accumulation_steps acc = acc / gradient_accumulation_steps if log_config.use_wandb and step % log_config.log_interval == 0: if train_config.enable_fsdp or train_config.enable_ddp: if rank == 0: wandb.log( { "train_inner/train_inner_loss": loss, "train_inner/train_inner_accuracy": acc, }, step=(epoch * total_length + step), ) else: wandb.log( { "train_inner/train_inner_loss": loss, "train_inner/train_inner_accuracy": acc, }, step=(epoch * total_length + step), ) total_loss += loss.detach().float() total_acc += acc # deepspeed should handle gradient accumulate model.backward(loss) model.step() if (step + 1) % gradient_accumulation_steps == 0 or step == len( train_dataloader ) - 1: pbar.update(1) pbar.set_description( f"Training Epoch: {epoch+1}/{train_config.num_epochs}, step {step}/{len(train_dataloader)} completed (loss: {loss.detach().float()}, acc: {acc})" ) if ( (epoch * total_length + step + 1) % train_config.validation_interval == 0 and train_config.run_validation ): eval_ppl, eval_epoch_loss, *rest = evaluation( model, train_config, eval_dataloader, local_rank, tokenizer ) eval_epoch_acc = rest[0] if rest else -1 checkpoint_start_time = time.perf_counter() if train_config.save_model and (eval_epoch_loss < best_val_loss): checkpoint_name = f"{train_config.model_name}_epoch_{str(epoch+1)}_step_{step+1}" save_model_checkpoint_deepspeed( model, train_config, checkpoint_name ) checkpoint_end_time = time.perf_counter() - checkpoint_start_time checkpoint_times.append(checkpoint_end_time) if eval_epoch_loss < best_val_loss: best_val_loss = eval_epoch_loss if rank == 0: logger.info( f"best eval loss on epoch {epoch+1} is {best_val_loss}" ) val_loss.append(eval_epoch_loss) val_prep.append(eval_ppl) if rest: if eval_epoch_acc > best_val_acc: best_val_acc = eval_epoch_acc if rank == 0: logger.info( f"best eval acc on epoch {epoch+1} is {best_val_acc}" ) val_acc.append(rest[0]) else: val_acc.append(-1) if log_config.use_wandb: if rank == 0: wandb.log( { "valid/val_epoch_loss": eval_epoch_loss, "valid/val_perplexity": eval_ppl, "valid/best_val_loss": best_val_loss, "valid/val_accuracy": val_acc[-1], "valid/val_best_accuracy": best_val_acc, } ) if train_config.run_test_during_validation: if rank == 0: logger.info("=====================================") logger.info( f"Test the file {train_config.run_test_during_validation_file} during validation:" ) with autocast(): logger.info( model.inference( train_config.run_test_during_validation_file, train_config.run_test_during_validation_prompt, ) ) logger.info("=====================================") dist.barrier() pbar.close() epoch_end_time = time.perf_counter() - epoch_start_time epoch_times.append(epoch_end_time) # Reducing total_loss across all devices if there's more than one CUDA device if torch.cuda.device_count() > 1 and ( train_config.enable_fsdp or train_config.enable_ddp ): dist.all_reduce(total_loss, op=dist.ReduceOp.SUM) dist.all_reduce(total_acc, op=dist.ReduceOp.SUM) train_epoch_loss = total_loss / len(train_dataloader) train_epoch_acc = total_acc / len(train_dataloader) if train_config.enable_fsdp or train_config.enable_ddp: train_epoch_loss = train_epoch_loss / world_size train_epoch_acc = train_epoch_acc / world_size train_perplexity = torch.exp(train_epoch_loss) train_prep.append(train_perplexity) train_loss.append(train_epoch_loss) train_acc.append(train_epoch_acc) if log_config.use_wandb: if train_config.enable_fsdp or train_config.enable_ddp: if rank == 0: wandb.log( { "train/train_perplexity": train_perplexity, "train/train_epoch_loss": train_epoch_loss, "train/train_epoch_acc": train_epoch_acc, } ) else: wandb.log( { "train/train_perplexity": train_perplexity, "train/train_epoch_loss": train_epoch_loss, "train/train_epoch_acc": train_epoch_acc, } ) if rank == 0: logger.info( f"Epoch {epoch+1}: train_perplexity={train_perplexity:.4f}, train_epoch_loss={train_epoch_loss:.4f}, epoch time {epoch_end_time}s" ) if rank == 0: logger.info(f"Max CUDA memory allocated was {memtrace.peak} GB") logger.info(f"Max CUDA memory reserved was {memtrace.max_reserved} GB") logger.info(f"Peak active CUDA memory was {memtrace.peak_active_gb} GB") logger.info(f"Cuda Malloc retires : {memtrace.cuda_malloc_retires}") logger.info( f"CPU Total Peak Memory consumed during the train (max): {memtrace.cpu_peaked + memtrace.cpu_begin} GB" ) # Update the learning rate as needed # lr_scheduler.step() avg_epoch_time = sum(epoch_times) / len(epoch_times) avg_checkpoint_time = ( sum(checkpoint_times) / len(checkpoint_times) if len(checkpoint_times) > 0 else 0 ) avg_train_prep = sum(train_prep) / len(train_prep) avg_train_loss = sum(train_loss) / len(train_loss) avg_train_acc = sum(train_acc) / len(train_acc) if train_config.run_validation: avg_eval_prep = sum(val_prep) / len(val_prep) avg_eval_loss = sum(val_loss) / len(val_loss) avg_eval_acc = sum(val_acc) / len(val_acc) results["avg_train_prep"] = avg_train_prep results["avg_train_loss"] = avg_train_loss results["avg_train_acc"] = avg_train_acc if train_config.run_validation: results["avg_eval_prep"] = avg_eval_prep results["avg_eval_loss"] = avg_eval_loss results["avg_eval_acc"] = avg_eval_acc results["avg_epoch_time"] = avg_epoch_time results["avg_checkpoint_time"] = avg_checkpoint_time # saving the training params including fsdp setting for reference. # if (train_config.enable_fsdp or train_config.enable_ddp)and not train_config.use_peft: # save_train_params(train_config, fsdp_config, rank) return results def evaluation(model, train_config, eval_dataloader, local_rank, tokenizer): """ Evaluates the model on the given dataloader Args: model: The model to evaluate eval_dataloader: The dataloader containing the evaluation data local_rank: The rank of the current node in a distributed setting tokenizer: The tokenizer used to decode predictions Returns: eval_ppl, eval_epoch_loss """ world_size = int(os.environ["WORLD_SIZE"]) model.eval() eval_preds = [] eval_loss = 0.0 # Initialize evaluation loss eval_acc = 0.0 autocast = ( torch.cuda.amp.autocast if train_config.use_fp16 else nullcontext ) # (Fix:MZY): fix expected scalar type mismatch in norm with MemoryTrace() as memtrace: total_length = len(eval_dataloader) pbar = tqdm( colour="green", desc=f"Evaluating Epoch", total=total_length, dynamic_ncols=True, ) for step, batch in enumerate(eval_dataloader): for key in batch.keys(): batch[key] = ( batch[key].to(local_rank).half() if isinstance(batch[key], torch.Tensor) and batch[key].dtype==torch.float32 else ( batch[key].to(local_rank) if isinstance(batch[key], torch.Tensor) else batch[key] ) ) # Ensure no gradients are computed for this scope to save memory with torch.no_grad(): # Forward pass and compute loss with autocast(): # (Fix:MZY): fix expected scalar type mismatch in norm outputs, *rest = model(**batch) acc = rest[0] if rest else -1 loss = outputs.loss eval_loss += loss.detach().float() eval_acc += acc # Decode predictions and add to evaluation predictions list preds = torch.argmax(outputs.logits, -1) eval_preds.extend( tokenizer.batch_decode( preds.detach().cpu().numpy(), skip_special_tokens=True ) ) pbar.update(1) pbar.set_description( f"step: {step+1}/{total_length}, eval_loss: {eval_loss/(step+1):.4f}, eval_acc: {eval_acc/(step+1):.4f}" ) # If there's more than one CUDA device, reduce evaluation loss across all devices if ( torch.cuda.device_count() > 1 ): dist.all_reduce(eval_loss, op=dist.ReduceOp.SUM) dist.all_reduce(eval_acc, op=dist.ReduceOp.SUM) # Compute average loss and perplexity eval_epoch_loss = eval_loss / len(eval_dataloader) eval_epoch_acc = eval_acc / len(eval_dataloader) eval_epoch_loss = eval_epoch_loss / world_size eval_epoch_acc = eval_epoch_acc / world_size eval_ppl = torch.exp(eval_epoch_loss) # Print evaluation metrics if local_rank == 0: logger.info(f" {eval_ppl=} {eval_epoch_loss=} {eval_epoch_acc=}") model.train() return eval_ppl, eval_epoch_loss, eval_epoch_acc def freeze_transformer_layers(model, num_layer): for i, layer in enumerate(model.model.layers): if i < num_layer: for param in layer.parameters(): param.requires_grad = False def check_frozen_layers_peft_model(model): for i, layer in enumerate(model.base_model.model.model.layers): for name, param in layer.named_parameters(): logger.info( f"Layer {i}, parameter {name}: requires_grad = {param.requires_grad}" ) def setup(): """Initialize the process group for distributed training""" dist.init_process_group("nccl") def setup_environ_flags(rank): """Set environment flags for debugging purposes""" os.environ["TORCH_SHOW_CPP_STACKTRACES"] = str(1) os.environ["NCCL_ASYNC_ERROR_HANDLING"] = str(1) # os.environ["TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" # This flag will help with CUDA memory fragmentations that can lead into OOM in some cases. # Note this is only availble in PyTorch Nighlies (as of July 30 2023) # os.environ['PYTORCH_CUDA_ALLOC_CONF']='expandable_segments:True' if rank == 0: logger.info(f"--> Running with torch dist debug set to detail") def cleanup(): """Clean up the process group after training""" dist.destroy_process_group() def clear_gpu_cache(rank=None): """Clear the GPU cache for all ranks""" if rank == 0: logger.info(f"Clearing GPU cache for all ranks") torch.cuda.empty_cache() def get_parameter_dtypes(model): """Get the data types of model parameters""" parameter_dtypes = {} for name, parameter in model.named_parameters(): parameter_dtypes[name] = parameter.dtype return parameter_dtypes def print_model_size(model, config, rank: int = 0) -> None: """ log model name, the number of trainable parameters and initialization time. Args: model: The PyTorch model. model_name (str): Name of the model. init_time_start (float): Initialization start time. init_time_end (float): Initialization end time. rank (int, optional): Current process's rank. Defaults to 0. """ if rank == 0: logger.info(f"--> Model {config.model_name}") total_params = sum(p.numel() for p in model.parameters() if p.requires_grad) logger.info( f"--> {config.model_name} has {total_params / 1e6} Million params\n" ) def print_module_size(module, module_name, rank: int = 0) -> None: """ Print module name, the number of trainable parameters and initialization time. Args: module: The PyTorch module. module_name (str): Name of the model. rank (int, optional): Current process's rank. Defaults to 0. """ if rank == 0: logger.info(f"--> Module {module_name}") total_params = sum(p.numel() for p in module.parameters() if p.requires_grad) logger.info(f"--> {module_name} has {total_params / 1e6} Million params\n") def save_train_params(train_config, fsdp_config, rank): """ This function saves the train_config and FSDP config into a train_params.yaml. This will be used by converter script in the inference folder to fetch the HF model name or path. It also would be hepful as a log for future references. """ # Convert the train_config and fsdp_config objects to dictionaries, # converting all values to strings to ensure they can be serialized into a YAML file train_config_dict = { k: str(v) for k, v in vars(train_config).items() if not k.startswith("__") } fsdp_config_dict = { k: str(v) for k, v in vars(fsdp_config).items() if not k.startswith("__") } # Merge the two dictionaries into one train_params_dict = {**train_config_dict, **fsdp_config_dict} # Construct the folder name (follwoing FSDP checkpointing style) using properties of the train_config object folder_name = ( train_config.dist_checkpoint_root_folder + "/" + train_config.dist_checkpoint_folder + "-" + train_config.model_name ) save_dir = Path.cwd() / folder_name # If the directory does not exist, create it if not os.path.exists(save_dir): os.makedirs(save_dir) # Convert the dictionary to a YAML string config_yaml = yaml.dump(train_params_dict, indent=4) file_name = os.path.join(save_dir, "train_params.yaml") # Check if there's a directory with the same name as the file if os.path.isdir(file_name): logger.info(f"Error: {file_name} is a directory, not a file.") else: # Write the YAML string to the file with open(file_name, "w") as f: f.write(config_yaml) if rank == 0: logger.info(f"training params are saved in {file_name}")