xcczach's picture
Upload 73 files
35c1cfd verified
raw
history blame
12.2 kB
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import ast
from itertools import chain
import logging
import math
import os
import sys
import json
import hashlib
import editdistance
from argparse import Namespace
import numpy as np
import torch
from fairseq import checkpoint_utils, options, tasks, utils, distributed_utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.logging import progress_bar
from fairseq.logging.meters import StopwatchMeter, TimeMeter
from fairseq.models import FairseqLanguageModel
from omegaconf import DictConfig
from pathlib import Path
import hydra
from hydra.core.config_store import ConfigStore
from fairseq.dataclass.configs import (
CheckpointConfig,
CommonConfig,
CommonEvalConfig,
DatasetConfig,
DistributedTrainingConfig,
GenerationConfig,
FairseqDataclass,
)
from dataclasses import dataclass, field, is_dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
from omegaconf import OmegaConf
logging.root.setLevel(logging.INFO)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
config_path = Path(__file__).resolve().parent / "conf"
@dataclass
class OverrideConfig(FairseqDataclass):
noise_wav: Optional[str] = field(default=None, metadata={'help': 'noise wav file'})
noise_prob: float = field(default=0, metadata={'help': 'noise probability'})
noise_snr: float = field(default=0, metadata={'help': 'noise SNR in audio'})
modalities: List[str] = field(default_factory=lambda: [""], metadata={'help': 'which modality to use'})
data: Optional[str] = field(default=None, metadata={'help': 'path to test data directory'})
label_dir: Optional[str] = field(default=None, metadata={'help': 'path to test label directory'})
@dataclass
class InferConfig(FairseqDataclass):
task: Any = None
generation: GenerationConfig = GenerationConfig()
common: CommonConfig = CommonConfig()
common_eval: CommonEvalConfig = CommonEvalConfig()
checkpoint: CheckpointConfig = CheckpointConfig()
distributed_training: DistributedTrainingConfig = DistributedTrainingConfig()
dataset: DatasetConfig = DatasetConfig()
override: OverrideConfig = OverrideConfig()
is_ax: bool = field(
default=False,
metadata={
"help": "if true, assumes we are using ax for tuning and returns a tuple for ax to consume"
},
)
def main(cfg: DictConfig):
if isinstance(cfg, Namespace):
cfg = convert_namespace_to_omegaconf(cfg)
assert cfg.common_eval.path is not None, "--path required for recognition!"
assert (
not cfg.generation.sampling or cfg.generation.nbest == cfg.generation.beam
), "--sampling requires --nbest to be equal to --beam"
if cfg.common_eval.results_path is not None:
os.makedirs(cfg.common_eval.results_path, exist_ok=True)
output_path = os.path.join(cfg.common_eval.results_path, "decode.log")
with open(output_path, "w", buffering=1, encoding="utf-8") as h:
return _main(cfg, h)
return _main(cfg, sys.stdout)
def get_symbols_to_strip_from_output(generator):
if hasattr(generator, "symbols_to_strip_from_output"):
return generator.symbols_to_strip_from_output
else:
return {generator.eos, generator.pad}
def _main(cfg, output_file):
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=output_file,
)
logger = logging.getLogger("hybrid.speech_recognize")
if output_file is not sys.stdout: # also print to stdout
logger.addHandler(logging.StreamHandler(sys.stdout))
utils.import_user_module(cfg.common)
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([cfg.common_eval.path])
models = [model.eval().cuda() for model in models] #!!
saved_cfg.task.modalities = cfg.override.modalities
task = tasks.setup_task(saved_cfg.task)
task.build_tokenizer(saved_cfg.tokenizer)
task.build_bpe(saved_cfg.bpe)
logger.info(cfg)
# Fix seed for stochastic decoding
if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
np.random.seed(cfg.common.seed)
utils.set_torch_seed(cfg.common.seed)
use_cuda = torch.cuda.is_available()
# Set dictionary
dictionary = task.target_dictionary
# loading the dataset should happen after the checkpoint has been loaded so we can give it the saved task config
task.cfg.noise_prob = cfg.override.noise_prob
task.cfg.noise_snr = cfg.override.noise_snr
task.cfg.noise_wav = cfg.override.noise_wav
if cfg.override.data is not None:
task.cfg.data = cfg.override.data
if cfg.override.label_dir is not None:
task.cfg.label_dir = cfg.override.label_dir
task.load_dataset(cfg.dataset.gen_subset, task_cfg=saved_cfg.task)
lms = [None]
# Optimize ensemble for generation
for model in chain(models, lms):
if model is None:
continue
if cfg.common.fp16:
model.half()
if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
model.cuda()
model.prepare_for_inference_(cfg)
# Load dataset (possibly sharded)
itr = task.get_batch_iterator(
dataset=task.dataset(cfg.dataset.gen_subset),
max_tokens=cfg.dataset.max_tokens,
max_sentences=cfg.dataset.batch_size,
max_positions=utils.resolve_max_positions(
task.max_positions(), *[m.max_positions() for m in models]
),
ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=cfg.dataset.required_batch_size_multiple,
seed=cfg.common.seed,
num_shards=cfg.distributed_training.distributed_world_size,
shard_id=cfg.distributed_training.distributed_rank,
num_workers=cfg.dataset.num_workers,
data_buffer_size=cfg.dataset.data_buffer_size,
).next_epoch_itr(shuffle=False)
progress = progress_bar.progress_bar(
itr,
log_format=cfg.common.log_format,
log_interval=cfg.common.log_interval,
default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
)
# Initialize generator
if cfg.generation.match_source_len:
logger.warning(
"The option match_source_len is not applicable to speech recognition. Ignoring it."
)
gen_timer = StopwatchMeter()
extra_gen_cls_kwargs = {
"lm_model": lms[0],
"lm_weight": cfg.generation.lm_weight,
}
cfg.generation.score_reference = False #
save_attention_plot = cfg.generation.print_alignment is not None
cfg.generation.print_alignment = None #
generator = task.build_generator(
models, cfg.generation, extra_gen_cls_kwargs=extra_gen_cls_kwargs
)
def decode_fn(x):
symbols_ignore = get_symbols_to_strip_from_output(generator)
symbols_ignore.add(dictionary.pad())
if hasattr(task.datasets[cfg.dataset.gen_subset].label_processors[0], 'decode'):
return task.datasets[cfg.dataset.gen_subset].label_processors[0].decode(x, symbols_ignore)
chars = dictionary.string(x, extra_symbols_to_ignore=symbols_ignore)
words = " ".join("".join(chars.split()).replace('|', ' ').split())
return words
num_sentences = 0
has_target = True
wps_meter = TimeMeter()
result_dict = {'utt_id': [], 'ref': [], 'hypo': []}
for sample in progress:
sample = utils.move_to_cuda(sample) if use_cuda else sample
if "net_input" not in sample:
continue
prefix_tokens = None
if cfg.generation.prefix_size > 0:
prefix_tokens = sample["target"][:, : cfg.generation.prefix_size]
constraints = None
if "constraints" in sample:
constraints = sample["constraints"]
gen_timer.start()
hypos = task.inference_step(
generator,
models,
sample,
prefix_tokens=prefix_tokens,
constraints=constraints,
)
num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos)
gen_timer.stop(num_generated_tokens)
for i in range(len(sample["id"])):
result_dict['utt_id'].append(sample['utt_id'][i])
ref_sent = decode_fn(sample['target'][i].int().cpu())
result_dict['ref'].append(ref_sent)
best_hypo = hypos[i][0]['tokens'].int().cpu()
hypo_str = decode_fn(best_hypo)
result_dict['hypo'].append(hypo_str)
logger.info(f"\nREF:{ref_sent}\nHYP:{hypo_str}\n")
wps_meter.update(num_generated_tokens)
progress.log({"wps": round(wps_meter.avg)})
num_sentences += sample["nsentences"] if "nsentences" in sample else sample["id"].numel()
logger.info("NOTE: hypothesis and token scores are output in base 2")
logger.info("Recognized {:,} utterances ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)".format(
num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1. / gen_timer.avg))
yaml_str = OmegaConf.to_yaml(cfg.generation)
fid = int(hashlib.md5(yaml_str.encode("utf-8")).hexdigest(), 16)
fid = fid % 1000000
result_fn = f"{cfg.common_eval.results_path}/hypo-{fid}.json"
json.dump(result_dict, open(result_fn, 'w'), indent=4)
n_err, n_total = 0, 0
assert len(result_dict['hypo']) == len(result_dict['ref'])
for hypo, ref in zip(result_dict['hypo'], result_dict['ref']):
hypo, ref = hypo.strip().split(), ref.strip().split()
n_err += editdistance.eval(hypo, ref)
n_total += len(ref)
wer = 100 * n_err / n_total
wer_fn = f"{cfg.common_eval.results_path}/wer.{fid}"
with open(wer_fn, "w") as fo:
fo.write(f"WER: {wer}\n")
fo.write(f"err / num_ref_words = {n_err} / {n_total}\n\n")
fo.write(f"{yaml_str}")
logger.info(f"WER: {wer}%")
return
@hydra.main(config_path=config_path, config_name="infer")
def hydra_main(cfg: InferConfig) -> Union[float, Tuple[float, Optional[float]]]:
container = OmegaConf.to_container(cfg, resolve=True, enum_to_str=True)
cfg = OmegaConf.create(container)
OmegaConf.set_struct(cfg, True)
if cfg.common.reset_logging:
reset_logging()
wer = float("inf")
try:
if cfg.common.profile:
with torch.cuda.profiler.profile():
with torch.autograd.profiler.emit_nvtx():
distributed_utils.call_main(cfg, main)
else:
distributed_utils.call_main(cfg, main)
except BaseException as e: # pylint: disable=broad-except
if not cfg.common.suppress_crashes:
raise
else:
logger.error("Crashed! %s", str(e))
return
def cli_main() -> None:
try:
from hydra._internal.utils import (
get_args,
) # pylint: disable=import-outside-toplevel
cfg_name = get_args().config_name or "infer"
except ImportError:
logger.warning("Failed to get config name from hydra args")
cfg_name = "infer"
cs = ConfigStore.instance()
cs.store(name=cfg_name, node=InferConfig)
for k in InferConfig.__dataclass_fields__:
if is_dataclass(InferConfig.__dataclass_fields__[k].type):
v = InferConfig.__dataclass_fields__[k].default
cs.store(name=k, node=v)
hydra_main() # pylint: disable=no-value-for-parameter
if __name__ == "__main__":
cli_main()