Spaces:
Runtime error
Runtime error
File size: 12,173 Bytes
35c1cfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import ast
from itertools import chain
import logging
import math
import os
import sys
import json
import hashlib
import editdistance
from argparse import Namespace
import numpy as np
import torch
from fairseq import checkpoint_utils, options, tasks, utils, distributed_utils
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.logging import progress_bar
from fairseq.logging.meters import StopwatchMeter, TimeMeter
from fairseq.models import FairseqLanguageModel
from omegaconf import DictConfig
from pathlib import Path
import hydra
from hydra.core.config_store import ConfigStore
from fairseq.dataclass.configs import (
CheckpointConfig,
CommonConfig,
CommonEvalConfig,
DatasetConfig,
DistributedTrainingConfig,
GenerationConfig,
FairseqDataclass,
)
from dataclasses import dataclass, field, is_dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
from omegaconf import OmegaConf
logging.root.setLevel(logging.INFO)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
config_path = Path(__file__).resolve().parent / "conf"
@dataclass
class OverrideConfig(FairseqDataclass):
noise_wav: Optional[str] = field(default=None, metadata={'help': 'noise wav file'})
noise_prob: float = field(default=0, metadata={'help': 'noise probability'})
noise_snr: float = field(default=0, metadata={'help': 'noise SNR in audio'})
modalities: List[str] = field(default_factory=lambda: [""], metadata={'help': 'which modality to use'})
data: Optional[str] = field(default=None, metadata={'help': 'path to test data directory'})
label_dir: Optional[str] = field(default=None, metadata={'help': 'path to test label directory'})
@dataclass
class InferConfig(FairseqDataclass):
task: Any = None
generation: GenerationConfig = GenerationConfig()
common: CommonConfig = CommonConfig()
common_eval: CommonEvalConfig = CommonEvalConfig()
checkpoint: CheckpointConfig = CheckpointConfig()
distributed_training: DistributedTrainingConfig = DistributedTrainingConfig()
dataset: DatasetConfig = DatasetConfig()
override: OverrideConfig = OverrideConfig()
is_ax: bool = field(
default=False,
metadata={
"help": "if true, assumes we are using ax for tuning and returns a tuple for ax to consume"
},
)
def main(cfg: DictConfig):
if isinstance(cfg, Namespace):
cfg = convert_namespace_to_omegaconf(cfg)
assert cfg.common_eval.path is not None, "--path required for recognition!"
assert (
not cfg.generation.sampling or cfg.generation.nbest == cfg.generation.beam
), "--sampling requires --nbest to be equal to --beam"
if cfg.common_eval.results_path is not None:
os.makedirs(cfg.common_eval.results_path, exist_ok=True)
output_path = os.path.join(cfg.common_eval.results_path, "decode.log")
with open(output_path, "w", buffering=1, encoding="utf-8") as h:
return _main(cfg, h)
return _main(cfg, sys.stdout)
def get_symbols_to_strip_from_output(generator):
if hasattr(generator, "symbols_to_strip_from_output"):
return generator.symbols_to_strip_from_output
else:
return {generator.eos, generator.pad}
def _main(cfg, output_file):
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=output_file,
)
logger = logging.getLogger("hybrid.speech_recognize")
if output_file is not sys.stdout: # also print to stdout
logger.addHandler(logging.StreamHandler(sys.stdout))
utils.import_user_module(cfg.common)
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task([cfg.common_eval.path])
models = [model.eval().cuda() for model in models] #!!
saved_cfg.task.modalities = cfg.override.modalities
task = tasks.setup_task(saved_cfg.task)
task.build_tokenizer(saved_cfg.tokenizer)
task.build_bpe(saved_cfg.bpe)
logger.info(cfg)
# Fix seed for stochastic decoding
if cfg.common.seed is not None and not cfg.generation.no_seed_provided:
np.random.seed(cfg.common.seed)
utils.set_torch_seed(cfg.common.seed)
use_cuda = torch.cuda.is_available()
# Set dictionary
dictionary = task.target_dictionary
# loading the dataset should happen after the checkpoint has been loaded so we can give it the saved task config
task.cfg.noise_prob = cfg.override.noise_prob
task.cfg.noise_snr = cfg.override.noise_snr
task.cfg.noise_wav = cfg.override.noise_wav
if cfg.override.data is not None:
task.cfg.data = cfg.override.data
if cfg.override.label_dir is not None:
task.cfg.label_dir = cfg.override.label_dir
task.load_dataset(cfg.dataset.gen_subset, task_cfg=saved_cfg.task)
lms = [None]
# Optimize ensemble for generation
for model in chain(models, lms):
if model is None:
continue
if cfg.common.fp16:
model.half()
if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
model.cuda()
model.prepare_for_inference_(cfg)
# Load dataset (possibly sharded)
itr = task.get_batch_iterator(
dataset=task.dataset(cfg.dataset.gen_subset),
max_tokens=cfg.dataset.max_tokens,
max_sentences=cfg.dataset.batch_size,
max_positions=utils.resolve_max_positions(
task.max_positions(), *[m.max_positions() for m in models]
),
ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test,
required_batch_size_multiple=cfg.dataset.required_batch_size_multiple,
seed=cfg.common.seed,
num_shards=cfg.distributed_training.distributed_world_size,
shard_id=cfg.distributed_training.distributed_rank,
num_workers=cfg.dataset.num_workers,
data_buffer_size=cfg.dataset.data_buffer_size,
).next_epoch_itr(shuffle=False)
progress = progress_bar.progress_bar(
itr,
log_format=cfg.common.log_format,
log_interval=cfg.common.log_interval,
default_log_format=("tqdm" if not cfg.common.no_progress_bar else "simple"),
)
# Initialize generator
if cfg.generation.match_source_len:
logger.warning(
"The option match_source_len is not applicable to speech recognition. Ignoring it."
)
gen_timer = StopwatchMeter()
extra_gen_cls_kwargs = {
"lm_model": lms[0],
"lm_weight": cfg.generation.lm_weight,
}
cfg.generation.score_reference = False #
save_attention_plot = cfg.generation.print_alignment is not None
cfg.generation.print_alignment = None #
generator = task.build_generator(
models, cfg.generation, extra_gen_cls_kwargs=extra_gen_cls_kwargs
)
def decode_fn(x):
symbols_ignore = get_symbols_to_strip_from_output(generator)
symbols_ignore.add(dictionary.pad())
if hasattr(task.datasets[cfg.dataset.gen_subset].label_processors[0], 'decode'):
return task.datasets[cfg.dataset.gen_subset].label_processors[0].decode(x, symbols_ignore)
chars = dictionary.string(x, extra_symbols_to_ignore=symbols_ignore)
words = " ".join("".join(chars.split()).replace('|', ' ').split())
return words
num_sentences = 0
has_target = True
wps_meter = TimeMeter()
result_dict = {'utt_id': [], 'ref': [], 'hypo': []}
for sample in progress:
sample = utils.move_to_cuda(sample) if use_cuda else sample
if "net_input" not in sample:
continue
prefix_tokens = None
if cfg.generation.prefix_size > 0:
prefix_tokens = sample["target"][:, : cfg.generation.prefix_size]
constraints = None
if "constraints" in sample:
constraints = sample["constraints"]
gen_timer.start()
hypos = task.inference_step(
generator,
models,
sample,
prefix_tokens=prefix_tokens,
constraints=constraints,
)
num_generated_tokens = sum(len(h[0]["tokens"]) for h in hypos)
gen_timer.stop(num_generated_tokens)
for i in range(len(sample["id"])):
result_dict['utt_id'].append(sample['utt_id'][i])
ref_sent = decode_fn(sample['target'][i].int().cpu())
result_dict['ref'].append(ref_sent)
best_hypo = hypos[i][0]['tokens'].int().cpu()
hypo_str = decode_fn(best_hypo)
result_dict['hypo'].append(hypo_str)
logger.info(f"\nREF:{ref_sent}\nHYP:{hypo_str}\n")
wps_meter.update(num_generated_tokens)
progress.log({"wps": round(wps_meter.avg)})
num_sentences += sample["nsentences"] if "nsentences" in sample else sample["id"].numel()
logger.info("NOTE: hypothesis and token scores are output in base 2")
logger.info("Recognized {:,} utterances ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)".format(
num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1. / gen_timer.avg))
yaml_str = OmegaConf.to_yaml(cfg.generation)
fid = int(hashlib.md5(yaml_str.encode("utf-8")).hexdigest(), 16)
fid = fid % 1000000
result_fn = f"{cfg.common_eval.results_path}/hypo-{fid}.json"
json.dump(result_dict, open(result_fn, 'w'), indent=4)
n_err, n_total = 0, 0
assert len(result_dict['hypo']) == len(result_dict['ref'])
for hypo, ref in zip(result_dict['hypo'], result_dict['ref']):
hypo, ref = hypo.strip().split(), ref.strip().split()
n_err += editdistance.eval(hypo, ref)
n_total += len(ref)
wer = 100 * n_err / n_total
wer_fn = f"{cfg.common_eval.results_path}/wer.{fid}"
with open(wer_fn, "w") as fo:
fo.write(f"WER: {wer}\n")
fo.write(f"err / num_ref_words = {n_err} / {n_total}\n\n")
fo.write(f"{yaml_str}")
logger.info(f"WER: {wer}%")
return
@hydra.main(config_path=config_path, config_name="infer")
def hydra_main(cfg: InferConfig) -> Union[float, Tuple[float, Optional[float]]]:
container = OmegaConf.to_container(cfg, resolve=True, enum_to_str=True)
cfg = OmegaConf.create(container)
OmegaConf.set_struct(cfg, True)
if cfg.common.reset_logging:
reset_logging()
wer = float("inf")
try:
if cfg.common.profile:
with torch.cuda.profiler.profile():
with torch.autograd.profiler.emit_nvtx():
distributed_utils.call_main(cfg, main)
else:
distributed_utils.call_main(cfg, main)
except BaseException as e: # pylint: disable=broad-except
if not cfg.common.suppress_crashes:
raise
else:
logger.error("Crashed! %s", str(e))
return
def cli_main() -> None:
try:
from hydra._internal.utils import (
get_args,
) # pylint: disable=import-outside-toplevel
cfg_name = get_args().config_name or "infer"
except ImportError:
logger.warning("Failed to get config name from hydra args")
cfg_name = "infer"
cs = ConfigStore.instance()
cs.store(name=cfg_name, node=InferConfig)
for k in InferConfig.__dataclass_fields__:
if is_dataclass(InferConfig.__dataclass_fields__[k].type):
v = InferConfig.__dataclass_fields__[k].default
cs.store(name=k, node=v)
hydra_main() # pylint: disable=no-value-for-parameter
if __name__ == "__main__":
cli_main()
|