Spaces:
Runtime error
Runtime error
from transformers import pipeline | |
import gradio as gr | |
# Load the Whisper model | |
whisper_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-small") | |
# Load the fine-tuned BERT model for harassment classification | |
bert_pipe = pipeline("text-classification", model="abdulelahagr/harassment_lang_classifier") | |
def classify_harassment(text): | |
predicted_category = bert_pipe(text) | |
return predicted_category | |
def process_audio(speech_file): | |
whisper_result = whisper_pipe(speech_file, generate_kwargs={"language": "english"}) | |
transcription = whisper_result["text"] | |
# 2. Classify the transcribed text | |
classification_result = classify_harassment(transcription) | |
predicted_label = classification_result[0]['label'] | |
print(transcription, predicted_label) | |
# 3. Prepare results for display | |
return transcription, predicted_label | |
with gr.Blocks() as demo: | |
gr.Markdown("## Kids harassment Classification") | |
audio_input = gr.Audio(type="filepath") | |
btn_process = gr.Button("Process") | |
transcription_output = gr.Textbox(label="Transcription") | |
classification_output = gr.Label(label="Classification Result") | |
btn_process.click(process_audio, inputs=audio_input, outputs=[transcription_output, classification_output]) | |
demo.launch(debug=True) | |