abdulelahagr commited on
Commit
f4387d2
1 Parent(s): 4814d7e
Files changed (1) hide show
  1. app.py +36 -0
app.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import pipeline
2
+ import gradio as gr
3
+
4
+ # Load the Whisper model
5
+ whisper_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-small")
6
+ # Load the fine-tuned BERT model for harassment classification
7
+ bert_pipe = pipeline("text-classification", model="abdulelahagr/harassment_lang_classifier")
8
+
9
+ def classify_harassment(text):
10
+ predicted_category = bert_pipe(text)
11
+ return predicted_category
12
+
13
+
14
+ def process_audio(speech_file):
15
+ whisper_result = whisper_pipe(speech_file, generate_kwargs={"language": "english"})
16
+ transcription = whisper_result["text"]
17
+
18
+ # 2. Classify the transcribed text
19
+ classification_result = classify_harassment(transcription)
20
+ predicted_label = classification_result[0]['label']
21
+ print(transcription, predicted_label)
22
+ # 3. Prepare results for display
23
+ return transcription, predicted_label
24
+
25
+
26
+
27
+ with gr.Blocks() as demo:
28
+ gr.Markdown("## Kids harassment Classification")
29
+ audio_input = gr.Audio(type="filepath")
30
+ btn_process = gr.Button("Process")
31
+ transcription_output = gr.Textbox(label="Transcription")
32
+ classification_output = gr.Label(label="Classification Result")
33
+
34
+ btn_process.click(process_audio, inputs=audio_input, outputs=[transcription_output, classification_output])
35
+
36
+ demo.launch(debug=True)