Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import pipeline | |
# Load the text classification model pipeline | |
analysis = pipeline("text-analysis", model='ZephyruSalsify/FinNews_SentimentAnalysis_Test') | |
classification = pipeline("text-classification", model="nickmuchi/finbert-tone-finetuned-finance-topic-classification") | |
st.set_page_config(page_title="Financial News Analysis", page_icon="♕") | |
st.header("Make Analysis for Financial News") | |
# Streamlit application layout | |
st.title("Financial News Analysis") | |
st.write("Classify corresponding Topic and Trend for Financial News") | |
st.image("./Fin.jpg", use_column_width = True) | |
# Text input for user to enter the text | |
text = st.text_area("Enter the Financial News", "") | |
# Perform text classification when the user clicks the "Classify" button | |
if st.button("Analyze"): | |
# Perform text analysis on the input text | |
results_1 = analysis(text)[0] | |
results_2 = classification(text)[0] | |
# Display the analysis result | |
max_score_1 = float('-inf') | |
max_label_1 = '' | |
for result in results_1: | |
if result['score'] > max_score_1: | |
max_score_1 = result['score'] | |
max_label_1 = result['label'] | |
# Display the classification result | |
max_score_2 = float('-inf') | |
max_label_2 = '' | |
for result in results_2: | |
if result['score'] > max_score_2: | |
max_score_2 = result['score'] | |
max_label_2 = result['label'] | |
st.write("Financial Text:", text) | |
st.write("Trend:", max_label_1) | |
st.write("Trend_Score:", max_score_1) | |
st.write("Finance Topic:", max_label_2) | |
st.write("Topic_Score:", max_score_2) |