Spaces:
Runtime error
Runtime error
File size: 1,636 Bytes
16412a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import streamlit as st
from transformers import pipeline
# Load the text classification model pipeline
analysis = pipeline("text-analysis", model='ZephyruSalsify/FinNews_SentimentAnalysis_Test')
classification = pipeline("text-classification", model="nickmuchi/finbert-tone-finetuned-finance-topic-classification")
st.set_page_config(page_title="Financial News Analysis", page_icon="♕")
st.header("Make Analysis for Financial News")
# Streamlit application layout
st.title("Financial News Analysis")
st.write("Classify corresponding Topic and Trend for Financial News")
st.image("./Fin.jpg", use_column_width = True)
# Text input for user to enter the text
text = st.text_area("Enter the Financial News", "")
# Perform text classification when the user clicks the "Classify" button
if st.button("Analyze"):
# Perform text analysis on the input text
results_1 = analysis(text)[0]
results_2 = classification(text)[0]
# Display the analysis result
max_score_1 = float('-inf')
max_label_1 = ''
for result in results_1:
if result['score'] > max_score_1:
max_score_1 = result['score']
max_label_1 = result['label']
# Display the classification result
max_score_2 = float('-inf')
max_label_2 = ''
for result in results_2:
if result['score'] > max_score_2:
max_score_2 = result['score']
max_label_2 = result['label']
st.write("Financial Text:", text)
st.write("Trend:", max_label_1)
st.write("Trend_Score:", max_score_1)
st.write("Finance Topic:", max_label_2)
st.write("Topic_Score:", max_score_2) |