ZephyruSalsify's picture
Upload app.py
8ede0a2 verified
raw
history blame
1.73 kB
import streamlit as st
from transformers import pipeline
access = "hf_"
token = "hhbFNpjKohezoexWMlyPUpvJQLWlaFhJaa"
# Load the text classification model pipeline
analysis = pipeline("text-classification", model='ZephyruSalsify/FinNews_SentimentAnalysis_Test')
classification = pipeline("text-classification", model="nickmuchi/finbert-tone-finetuned-finance-topic-classification", token=access+token)
st.set_page_config(page_title="Financial News Analysis", page_icon="♕")
# Streamlit application layout
st.title("Financial News Analysis")
st.write("Analyze corresponding Topic and Trend for Financial News!")
st.image("./Fin.jpg", use_column_width = True)
# Text input for user to enter the text
text = st.text_area("Enter the Financial News", "")
# Perform text classification when the user clicks the "Classify" button
if st.button("Analyze"):
# Perform text analysis on the input text
results_1 = analysis(text)[0]
results_2 = classification(text)[0]
# Display the analysis result
#max_score_1 = float('-inf')
#max_label_1 = ''
#for result_1 in results_1:
# if result_1['score'] > max_score_1:
# max_score_1 = result_1['score']
# max_label_1 = result_1['label']
# Display the classification result
#max_score_2 = float('-inf')
#max_label_2 = ''
#for result_2 in results_2:
# if result_2['score'] > max_score_2:
# max_score_2 = result_2['score']
# max_label_2 = result_2['label']
st.write("Financial Text:", text)
st.write("Trend:", results_1["label"])
st.write("Trend_Score:", results_1["score"])
st.write("Finance Topic:", results_2["label"])
st.write("Topic_Score:", results_2["score"])