ZephyruSalsify commited on
Commit
8ede0a2
1 Parent(s): e0312a1

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -0
app.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+
4
+ access = "hf_"
5
+ token = "hhbFNpjKohezoexWMlyPUpvJQLWlaFhJaa"
6
+
7
+ # Load the text classification model pipeline
8
+ analysis = pipeline("text-classification", model='ZephyruSalsify/FinNews_SentimentAnalysis_Test')
9
+ classification = pipeline("text-classification", model="nickmuchi/finbert-tone-finetuned-finance-topic-classification", token=access+token)
10
+
11
+ st.set_page_config(page_title="Financial News Analysis", page_icon="♕")
12
+
13
+ # Streamlit application layout
14
+ st.title("Financial News Analysis")
15
+ st.write("Analyze corresponding Topic and Trend for Financial News!")
16
+ st.image("./Fin.jpg", use_column_width = True)
17
+
18
+ # Text input for user to enter the text
19
+ text = st.text_area("Enter the Financial News", "")
20
+
21
+ # Perform text classification when the user clicks the "Classify" button
22
+ if st.button("Analyze"):
23
+
24
+ # Perform text analysis on the input text
25
+ results_1 = analysis(text)[0]
26
+ results_2 = classification(text)[0]
27
+
28
+ # Display the analysis result
29
+ #max_score_1 = float('-inf')
30
+ #max_label_1 = ''
31
+
32
+ #for result_1 in results_1:
33
+ # if result_1['score'] > max_score_1:
34
+ # max_score_1 = result_1['score']
35
+ # max_label_1 = result_1['label']
36
+
37
+ # Display the classification result
38
+ #max_score_2 = float('-inf')
39
+ #max_label_2 = ''
40
+
41
+ #for result_2 in results_2:
42
+ # if result_2['score'] > max_score_2:
43
+ # max_score_2 = result_2['score']
44
+ # max_label_2 = result_2['label']
45
+
46
+ st.write("Financial Text:", text)
47
+ st.write("Trend:", results_1["label"])
48
+ st.write("Trend_Score:", results_1["score"])
49
+
50
+ st.write("Finance Topic:", results_2["label"])
51
+ st.write("Topic_Score:", results_2["score"])