Spaces:
Sleeping
Sleeping
from vocca_ai.ai_response import generate_call_summary | |
from vocca_ai.intent_classifier import classify_intent | |
from vocca_ai.sentiment import analyze_sentiment | |
from vocca_ai.db_handler import log_call, fetch_recent_calls | |
import streamlit as st | |
from vocca_ai.preprocess import priority_score | |
from vocca_ai.intent_classifier import classify_intent | |
import sys | |
import os | |
# this line ensures Python can find the 'models' directory | |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) | |
st.title("π©Ί AI-Powered Call Insights for Vocca") | |
st.write("Analyze patient calls, detect urgency, and generate AI-powered responses.") | |
user_input = st.text_area("π Enter Call Transcript:", height=250) | |
if user_input: | |
intent = classify_intent(user_input) | |
priority = priority_score(user_input) | |
sentiment = analyze_sentiment(user_input) # Now using DistilBERT | |
ai_response = generate_call_summary(user_input) # Now using Falcon-7B | |
st.subheader(" Extracted Call Insights") | |
st.write(f"**Intent:** {intent}") | |
st.write(f"**Priority Level:** {priority}") | |
st.write(f"**Sentiment:** {sentiment}") | |
st.write(f"**AI Suggested Response:** {ai_response}") | |
log_call(user_input, intent, priority, sentiment, ai_response) | |
st.success("β Call successfully logged & analyzed!") | |
if st.button("π Show Recent Calls"): | |
calls = fetch_recent_calls() | |
st.subheader("π Recent Call Logs") | |
for row in calls: | |
st.write(f" **Transcript:** {row[1]}") | |
st.write(f" **Intent:** {row[2]}, **Priority:** {row[3]}, **Sentiment:** {row[4]}") | |
st.write(f" **AI Response:** {row[5]}") | |
st.write("---") | |