from vocca_ai.ai_response import generate_call_summary from vocca_ai.intent_classifier import classify_intent from vocca_ai.sentiment import analyze_sentiment from vocca_ai.db_handler import log_call, fetch_recent_calls import streamlit as st from vocca_ai.preprocess import priority_score from vocca_ai.intent_classifier import classify_intent import sys import os # this line ensures Python can find the 'models' directory sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) st.title("🩺 AI-Powered Call Insights for Vocca") st.write("Analyze patient calls, detect urgency, and generate AI-powered responses.") user_input = st.text_area("📞 Enter Call Transcript:", height=250) if user_input: intent = classify_intent(user_input) priority = priority_score(user_input) sentiment = analyze_sentiment(user_input) # Now using DistilBERT ai_response = generate_call_summary(user_input) # Now using Falcon-7B st.subheader(" Extracted Call Insights") st.write(f"**Intent:** {intent}") st.write(f"**Priority Level:** {priority}") st.write(f"**Sentiment:** {sentiment}") st.write(f"**AI Suggested Response:** {ai_response}") log_call(user_input, intent, priority, sentiment, ai_response) st.success("✅ Call successfully logged & analyzed!") if st.button("📊 Show Recent Calls"): calls = fetch_recent_calls() st.subheader("📊 Recent Call Logs") for row in calls: st.write(f" **Transcript:** {row[1]}") st.write(f" **Intent:** {row[2]}, **Priority:** {row[3]}, **Sentiment:** {row[4]}") st.write(f" **AI Response:** {row[5]}") st.write("---")