|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
from langchain import LLMChain |
|
from langchain.llms import Llama |
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
from tqdm import tqdm |
|
import uvicorn |
|
from dotenv import load_dotenv |
|
import io |
|
import requests |
|
import asyncio |
|
import time |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
model_configs = [ |
|
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"}, |
|
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"}, |
|
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"}, |
|
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"}, |
|
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"}, |
|
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"}, |
|
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"}, |
|
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"}, |
|
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"}, |
|
{"repo_id": "Ffftdtd5dtft/starcoder2-15b-Q2_K-GGUF", "filename": "starcoder2-15b-q2_k.gguf", "name": "Starcoder2 15B"}, |
|
{"repo_id": "Ffftdtd5dtft/gemma-2-2b-it-Q2_K-GGUF", "filename": "gemma-2-2b-it-q2_k.gguf", "name": "Gemma 2-2B IT"}, |
|
{"repo_id": "Ffftdtd5dtft/sarvam-2b-v0.5-Q2_K-GGUF", "filename": "sarvam-2b-v0.5-q2_k.gguf", "name": "Sarvam 2B v0.5"}, |
|
{"repo_id": "Ffftdtd5dtft/WizardLM-13B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-13b-uncensored-q2_k.gguf", "name": "WizardLM 13B Uncensored"}, |
|
{"repo_id": "Ffftdtd5dtft/Qwen2-Math-72B-Instruct-Q2_K-GGUF", "filename": "qwen2-math-72b-instruct-q2_k.gguf", "name": "Qwen2 Math 72B Instruct"}, |
|
{"repo_id": "Ffftdtd5dtft/WizardLM-7B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-7b-uncensored-q2_k.gguf", "name": "WizardLM 7B Uncensored"}, |
|
{"repo_id": "Ffftdtd5dtft/Qwen2-Math-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-math-7b-instruct-q2_k.gguf", "name": "Qwen2 Math 7B Instruct"} |
|
] |
|
|
|
|
|
class ModelManager: |
|
def __init__(self): |
|
self.models = [] |
|
self.configs = {} |
|
|
|
async def download_model_to_memory(self, model_config): |
|
print(f"Descargando modelo: {model_config['name']}...") |
|
url = f"https://huggingface.co./{model_config['repo_id']}/resolve/main/{model_config['filename']}" |
|
response = requests.get(url) |
|
if response.status_code == 200: |
|
model_file = io.BytesIO(response.content) |
|
return model_file |
|
else: |
|
raise Exception(f"Error al descargar el modelo: {response.status_code}") |
|
|
|
async def load_model(self, model_config): |
|
try: |
|
start_time = time.time() |
|
model_file = await self.download_model_to_memory(model_config) |
|
print(f"Cargando modelo: {model_config['name']}...") |
|
|
|
|
|
async def load_part(part): |
|
|
|
await asyncio.sleep(0.1) |
|
|
|
|
|
if time.time() - start_time > 1: |
|
print(f"Modelo {model_config['name']} tard贸 m谩s de 1 segundo en cargarse, dividiendo la carga...") |
|
await asyncio.gather(*(load_part(part) for part in range(5))) |
|
else: |
|
model = await asyncio.get_event_loop().run_in_executor( |
|
None, |
|
lambda: Llama.from_pretrained(model_file) |
|
) |
|
|
|
model = await asyncio.get_event_loop().run_in_executor( |
|
None, |
|
lambda: Llama.from_pretrained(model_file) |
|
) |
|
tokenizer = model.tokenizer |
|
|
|
|
|
model_data = { |
|
'model': model, |
|
'tokenizer': tokenizer, |
|
'pad_token': tokenizer.pad_token, |
|
'pad_token_id': tokenizer.pad_token_id, |
|
'eos_token': tokenizer.eos_token, |
|
'eos_token_id': tokenizer.eos_token_id, |
|
'bos_token': tokenizer.bos_token, |
|
'bos_token_id': tokenizer.bos_token_id, |
|
'unk_token': tokenizer.unk_token, |
|
'unk_token_id': tokenizer.unk_token_id |
|
} |
|
|
|
self.models.append({"model_data": model_data, "name": model_config['name']}) |
|
except Exception as e: |
|
print(f"Error al cargar el modelo: {e}") |
|
|
|
async def load_all_models(self): |
|
print("Iniciando carga de modelos...") |
|
start_time = time.time() |
|
tasks = [self.load_model(config) for config in model_configs] |
|
await asyncio.gather(*tasks) |
|
end_time = time.time() |
|
print(f"Todos los modelos han sido cargados en {end_time - start_time:.2f} segundos.") |
|
|
|
|
|
model_manager = ModelManager() |
|
|
|
@app.on_event("startup") |
|
async def startup_event(): |
|
await model_manager.load_all_models() |
|
|
|
|
|
class ChatRequest(BaseModel): |
|
message: str |
|
top_k: int = 50 |
|
top_p: float = 0.95 |
|
temperature: float = 0.7 |
|
|
|
|
|
TOKEN_LIMIT = 1000 |
|
|
|
|
|
async def generate_chat_response(request, model_data): |
|
try: |
|
user_input = normalize_input(request.message) |
|
llm = model_data['model_data']['model'] |
|
tokenizer = model_data['model_data']['tokenizer'] |
|
|
|
|
|
response = await asyncio.get_event_loop().run_in_executor( |
|
None, |
|
lambda: llm(user_input, max_length=TOKEN_LIMIT, do_sample=True, top_k=request.top_k, top_p=request.top_p, temperature=request.temperature) |
|
) |
|
generated_text = response['generated_text'] |
|
|
|
split_response = split_long_response(generated_text) |
|
return {"response": split_response, "literal": user_input, "model_name": model_data['name']} |
|
except Exception as e: |
|
print(f"Error al generar la respuesta: {e}") |
|
return {"response": "Error al generar la respuesta", "literal": user_input, "model_name": model_data['name']} |
|
|
|
def split_long_response(response): |
|
""" Divide la respuesta en partes m谩s peque帽as si excede el l铆mite de tokens. """ |
|
parts = [] |
|
while len(response) > TOKEN_LIMIT: |
|
part = response[:TOKEN_LIMIT] |
|
response = response[TOKEN_LIMIT:] |
|
parts.append(part.strip()) |
|
if response: |
|
parts.append(response.strip()) |
|
return '\n'.join(parts) |
|
|
|
def remove_duplicates(text): |
|
""" Elimina duplicados en el texto. """ |
|
lines = text.splitlines() |
|
unique_lines = list(dict.fromkeys(lines)) |
|
return '\n'.join(unique_lines) |
|
|
|
def remove_repetitive_responses(responses): |
|
unique_responses = [] |
|
seen_responses = set() |
|
for response in responses: |
|
normalized_response = remove_duplicates(response['response']) |
|
if normalized_response not in seen_responses: |
|
seen_responses.add(normalized_response) |
|
response['response'] = normalized_response |
|
unique_responses.append(response) |
|
return unique_responses |
|
|
|
@app.post("/chat") |
|
async def chat(request: ChatRequest): |
|
results = [] |
|
for model_data in model_manager.models: |
|
response = await generate_chat_response(request, model_data) |
|
results.append(response) |
|
unique_results = remove_repetitive_responses(results) |
|
return {"results": unique_results} |
|
|
|
|
|
if __name__ == "__main__": |
|
uvicorn.run(app, host="0.0.0.0", port=8000) |
|
|