Uhhy commited on
Commit
9883ddb
1 Parent(s): 88a7c6d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +185 -0
app.py ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, HTTPException
2
+ from pydantic import BaseModel
3
+ from langchain import LLMChain
4
+ from langchain.llms import Llama
5
+ from concurrent.futures import ThreadPoolExecutor, as_completed
6
+ from tqdm import tqdm
7
+ import uvicorn
8
+ from dotenv import load_dotenv
9
+ import io
10
+ import requests
11
+ import asyncio
12
+ import time
13
+
14
+ # Cargar variables de entorno
15
+ load_dotenv()
16
+
17
+ # Inicializar aplicación FastAPI
18
+ app = FastAPI()
19
+
20
+ # Configuración de los modelos
21
+ model_configs = [
22
+ {"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
23
+ {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
24
+ {"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"},
25
+ {"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
26
+ {"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
27
+ {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
28
+ {"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
29
+ {"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
30
+ {"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
31
+ {"repo_id": "Ffftdtd5dtft/starcoder2-15b-Q2_K-GGUF", "filename": "starcoder2-15b-q2_k.gguf", "name": "Starcoder2 15B"},
32
+ {"repo_id": "Ffftdtd5dtft/gemma-2-2b-it-Q2_K-GGUF", "filename": "gemma-2-2b-it-q2_k.gguf", "name": "Gemma 2-2B IT"},
33
+ {"repo_id": "Ffftdtd5dtft/sarvam-2b-v0.5-Q2_K-GGUF", "filename": "sarvam-2b-v0.5-q2_k.gguf", "name": "Sarvam 2B v0.5"},
34
+ {"repo_id": "Ffftdtd5dtft/WizardLM-13B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-13b-uncensored-q2_k.gguf", "name": "WizardLM 13B Uncensored"},
35
+ {"repo_id": "Ffftdtd5dtft/Qwen2-Math-72B-Instruct-Q2_K-GGUF", "filename": "qwen2-math-72b-instruct-q2_k.gguf", "name": "Qwen2 Math 72B Instruct"},
36
+ {"repo_id": "Ffftdtd5dtft/WizardLM-7B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-7b-uncensored-q2_k.gguf", "name": "WizardLM 7B Uncensored"},
37
+ {"repo_id": "Ffftdtd5dtft/Qwen2-Math-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-math-7b-instruct-q2_k.gguf", "name": "Qwen2 Math 7B Instruct"}
38
+ ]
39
+
40
+ # Clase para gestionar modelos
41
+ class ModelManager:
42
+ def __init__(self):
43
+ self.models = []
44
+ self.configs = {}
45
+
46
+ async def download_model_to_memory(self, model_config):
47
+ print(f"Descargando modelo: {model_config['name']}...")
48
+ url = f"https://huggingface.co/{model_config['repo_id']}/resolve/main/{model_config['filename']}"
49
+ response = requests.get(url)
50
+ if response.status_code == 200:
51
+ model_file = io.BytesIO(response.content)
52
+ return model_file
53
+ else:
54
+ raise Exception(f"Error al descargar el modelo: {response.status_code}")
55
+
56
+ async def load_model(self, model_config):
57
+ try:
58
+ start_time = time.time()
59
+ model_file = await self.download_model_to_memory(model_config)
60
+ print(f"Cargando modelo: {model_config['name']}...")
61
+
62
+ # Simulación de división de carga si el tiempo excede 1 segundo
63
+ async def load_part(part):
64
+ # Esta función simula la carga de una parte del modelo
65
+ await asyncio.sleep(0.1) # Simula un pequeño retraso en la carga
66
+
67
+ # Se divide la carga en partes si excede 1 segundo
68
+ if time.time() - start_time > 1:
69
+ print(f"Modelo {model_config['name']} tardó más de 1 segundo en cargarse, dividiendo la carga...")
70
+ await asyncio.gather(*(load_part(part) for part in range(5))) # Simulación de división en 5 partes
71
+ else:
72
+ model = await asyncio.get_event_loop().run_in_executor(
73
+ None,
74
+ lambda: Llama.from_pretrained(model_file)
75
+ )
76
+
77
+ model = await asyncio.get_event_loop().run_in_executor(
78
+ None,
79
+ lambda: Llama.from_pretrained(model_file)
80
+ )
81
+ tokenizer = model.tokenizer
82
+
83
+ # Almacenar tokens y tokenizer en la RAM
84
+ model_data = {
85
+ 'model': model,
86
+ 'tokenizer': tokenizer,
87
+ 'pad_token': tokenizer.pad_token,
88
+ 'pad_token_id': tokenizer.pad_token_id,
89
+ 'eos_token': tokenizer.eos_token,
90
+ 'eos_token_id': tokenizer.eos_token_id,
91
+ 'bos_token': tokenizer.bos_token,
92
+ 'bos_token_id': tokenizer.bos_token_id,
93
+ 'unk_token': tokenizer.unk_token,
94
+ 'unk_token_id': tokenizer.unk_token_id
95
+ }
96
+
97
+ self.models.append({"model_data": model_data, "name": model_config['name']})
98
+ except Exception as e:
99
+ print(f"Error al cargar el modelo: {e}")
100
+
101
+ async def load_all_models(self):
102
+ print("Iniciando carga de modelos...")
103
+ start_time = time.time()
104
+ tasks = [self.load_model(config) for config in model_configs]
105
+ await asyncio.gather(*tasks)
106
+ end_time = time.time()
107
+ print(f"Todos los modelos han sido cargados en {end_time - start_time:.2f} segundos.")
108
+
109
+ # Instanciar ModelManager y cargar modelos
110
+ model_manager = ModelManager()
111
+
112
+ @app.on_event("startup")
113
+ async def startup_event():
114
+ await model_manager.load_all_models()
115
+
116
+ # Modelo global para la solicitud de chat
117
+ class ChatRequest(BaseModel):
118
+ message: str
119
+ top_k: int = 50
120
+ top_p: float = 0.95
121
+ temperature: float = 0.7
122
+
123
+ # Límite de tokens para respuestas
124
+ TOKEN_LIMIT = 1000 # Define el límite de tokens permitido por respuesta
125
+
126
+ # Función para generar respuestas de chat
127
+ async def generate_chat_response(request, model_data):
128
+ try:
129
+ user_input = normalize_input(request.message)
130
+ llm = model_data['model_data']['model']
131
+ tokenizer = model_data['model_data']['tokenizer']
132
+
133
+ # Generar respuesta de manera rápida
134
+ response = await asyncio.get_event_loop().run_in_executor(
135
+ None,
136
+ lambda: llm(user_input, max_length=TOKEN_LIMIT, do_sample=True, top_k=request.top_k, top_p=request.top_p, temperature=request.temperature)
137
+ )
138
+ generated_text = response['generated_text']
139
+ # Dividir respuesta larga
140
+ split_response = split_long_response(generated_text)
141
+ return {"response": split_response, "literal": user_input, "model_name": model_data['name']}
142
+ except Exception as e:
143
+ print(f"Error al generar la respuesta: {e}")
144
+ return {"response": "Error al generar la respuesta", "literal": user_input, "model_name": model_data['name']}
145
+
146
+ def split_long_response(response):
147
+ """ Divide la respuesta en partes más pequeñas si excede el límite de tokens. """
148
+ parts = []
149
+ while len(response) > TOKEN_LIMIT:
150
+ part = response[:TOKEN_LIMIT]
151
+ response = response[TOKEN_LIMIT:]
152
+ parts.append(part.strip())
153
+ if response:
154
+ parts.append(response.strip())
155
+ return '\n'.join(parts)
156
+
157
+ def remove_duplicates(text):
158
+ """ Elimina duplicados en el texto. """
159
+ lines = text.splitlines()
160
+ unique_lines = list(dict.fromkeys(lines))
161
+ return '\n'.join(unique_lines)
162
+
163
+ def remove_repetitive_responses(responses):
164
+ unique_responses = []
165
+ seen_responses = set()
166
+ for response in responses:
167
+ normalized_response = remove_duplicates(response['response'])
168
+ if normalized_response not in seen_responses:
169
+ seen_responses.add(normalized_response)
170
+ response['response'] = normalized_response
171
+ unique_responses.append(response)
172
+ return unique_responses
173
+
174
+ @app.post("/chat")
175
+ async def chat(request: ChatRequest):
176
+ results = []
177
+ for model_data in model_manager.models:
178
+ response = await generate_chat_response(request, model_data)
179
+ results.append(response)
180
+ unique_results = remove_repetitive_responses(results)
181
+ return {"results": unique_results}
182
+
183
+ # Ejecutar la aplicación FastAPI
184
+ if __name__ == "__main__":
185
+ uvicorn.run(app, host="0.0.0.0", port=8000)