|
from pydantic import BaseModel |
|
from llama_cpp import Llama |
|
from concurrent.futures import ThreadPoolExecutor |
|
import re |
|
import os |
|
import gradio as gr |
|
from dotenv import load_dotenv |
|
from fastapi import FastAPI, Request |
|
from fastapi.responses import JSONResponse |
|
import spaces |
|
import urllib3 |
|
import random |
|
|
|
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) |
|
|
|
app = FastAPI() |
|
load_dotenv() |
|
|
|
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") |
|
|
|
global_data = { |
|
'model': None, |
|
'tokens': { |
|
'eos': 'eos_token', |
|
'pad': 'pad_token', |
|
'padding': 'padding_token', |
|
'unk': 'unk_token', |
|
'bos': 'bos_token', |
|
'sep': 'sep_token', |
|
'cls': 'cls_token', |
|
'mask': 'mask_token' |
|
} |
|
} |
|
|
|
model_configs = [ |
|
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"}, |
|
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"}, |
|
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"}, |
|
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"}, |
|
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"}, |
|
{"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"}, |
|
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-IQ2_XXS-GGUF", "filename": "phi-3-mini-128k-instruct-iq2_xxs-imat.gguf", "name": "Phi 3 Mini 128K Instruct XXS"}, |
|
{"repo_id": "Ffftdtd5dtft/TinyLlama-1.1B-Chat-v1.0-IQ1_S-GGUF", "filename": "tinyllama-1.1b-chat-v1.0-iq1_s-imat.gguf", "name": "TinyLlama 1.1B Chat"}, |
|
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"}, |
|
{"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf", "name": "Codegemma 2B"}, |
|
] |
|
|
|
class ModelManager: |
|
def __init__(self): |
|
self.model = None |
|
|
|
def load_models(self): |
|
models = [] |
|
for config in model_configs: |
|
try: |
|
model = Llama.from_pretrained(repo_id=config['repo_id'], filename=config['filename'], use_auth_token=HUGGINGFACE_TOKEN) |
|
models.append(model) |
|
except Exception: |
|
continue |
|
self.model = models |
|
|
|
model_manager = ModelManager() |
|
model_manager.load_models() |
|
global_data['model'] = model_manager.model |
|
|
|
class ChatRequest(BaseModel): |
|
message: str |
|
|
|
def normalize_input(input_text): |
|
return input_text.strip() |
|
|
|
def remove_duplicates(text): |
|
text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text) |
|
text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text) |
|
text = text.replace('[/INST]', '') |
|
lines = text.split('\n') |
|
unique_lines = [] |
|
seen_lines = set() |
|
for line in lines: |
|
if line not in seen_lines: |
|
unique_lines.append(line) |
|
seen_lines.add(line) |
|
return '\n'.join(unique_lines) |
|
|
|
@spaces.GPU() |
|
async def generate_combined_response(inputs): |
|
combined_response = "" |
|
top_p = round(random.uniform(0.01, 1.00), 2) |
|
top_k = random.randint(1, 100) |
|
temperature = round(random.uniform(0.01, 2.00), 2) |
|
for model in global_data['model']: |
|
try: |
|
response = model(inputs, top_p=top_p, top_k=top_k, temperature=temperature) |
|
combined_response += remove_duplicates(response['choices'][0]['text']) + "\n" |
|
except Exception: |
|
continue |
|
return combined_response |
|
|
|
async def process_message(message): |
|
inputs = normalize_input(message) |
|
combined_response = await generate_combined_response(inputs) |
|
formatted_response = "" |
|
for line in combined_response.split("\n"): |
|
formatted_response += f"{line}\n\n" |
|
return formatted_response |
|
|
|
@app.post("/generate_multimodel") |
|
async def api_generate_multimodel(request: Request): |
|
data = await request.json() |
|
message = data["message"] |
|
formatted_response = await process_message(message) |
|
return JSONResponse({"response": formatted_response}) |
|
|
|
iface = gr.Interface( |
|
fn=process_message, |
|
inputs=gr.Textbox(lines=2, placeholder="Enter your message here..."), |
|
outputs=gr.Markdown(), |
|
title="Multi-Model LLM API", |
|
description="Enter a message and get responses from a unified model.", |
|
) |
|
|
|
if __name__ == "__main__": |
|
port = int(os.environ.get("PORT", 7860)) |
|
iface.launch(server_port=port) |
|
|