File size: 4,738 Bytes
2dc339d
 
 
 
 
 
 
 
 
 
 
4b2e116
2dc339d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9f28ba
 
 
 
 
 
 
 
 
 
2dc339d
 
 
 
 
 
 
 
 
 
 
 
52a11c0
5b21cd9
2dc339d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b21cd9
4b2e116
5b21cd9
2dc339d
 
4b2e116
2dc339d
52a11c0
5b21cd9
2dc339d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from pydantic import BaseModel
from llama_cpp import Llama
from concurrent.futures import ThreadPoolExecutor
import re
import os
import gradio as gr
from dotenv import load_dotenv
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
import spaces
import urllib3
import random

urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

app = FastAPI()
load_dotenv()

HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")

global_data = {
    'model': None,
    'tokens': {
        'eos': 'eos_token',
        'pad': 'pad_token',
        'padding': 'padding_token',
        'unk': 'unk_token',
        'bos': 'bos_token',
        'sep': 'sep_token',
        'cls': 'cls_token',
        'mask': 'mask_token'
    }
}

model_configs = [
    {"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
    {"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
    {"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
    {"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
    {"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
    {"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf", "name": "Mistral Nemo Instruct 2407"},
    {"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-IQ2_XXS-GGUF", "filename": "phi-3-mini-128k-instruct-iq2_xxs-imat.gguf", "name": "Phi 3 Mini 128K Instruct XXS"},
    {"repo_id": "Ffftdtd5dtft/TinyLlama-1.1B-Chat-v1.0-IQ1_S-GGUF", "filename": "tinyllama-1.1b-chat-v1.0-iq1_s-imat.gguf", "name": "TinyLlama 1.1B Chat"},
    {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
    {"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf", "name": "Codegemma 2B"},
]

class ModelManager:
    def __init__(self):
        self.model = None

    def load_models(self):
        models = []
        for config in model_configs:
            try:
                model = Llama.from_pretrained(repo_id=config['repo_id'], filename=config['filename'], use_auth_token=HUGGINGFACE_TOKEN)
                models.append(model)
            except Exception:
                continue
        self.model = models

model_manager = ModelManager()
model_manager.load_models()
global_data['model'] = model_manager.model

class ChatRequest(BaseModel):
    message: str

def normalize_input(input_text):
    return input_text.strip()

def remove_duplicates(text):
    text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text)
    text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text)
    text = text.replace('[/INST]', '')
    lines = text.split('\n')
    unique_lines = []
    seen_lines = set()
    for line in lines:
        if line not in seen_lines:
            unique_lines.append(line)
            seen_lines.add(line)
    return '\n'.join(unique_lines)

@spaces.GPU()
async def generate_combined_response(inputs):
    combined_response = ""
    top_p = round(random.uniform(0.01, 1.00), 2)
    top_k = random.randint(1, 100)
    temperature = round(random.uniform(0.01, 2.00), 2)
    for model in global_data['model']:
        try:
            response = model(inputs, top_p=top_p, top_k=top_k, temperature=temperature)
            combined_response += remove_duplicates(response['choices'][0]['text']) + "\n"
        except Exception:
            continue
    return combined_response

async def process_message(message):
    inputs = normalize_input(message)
    combined_response = await generate_combined_response(inputs)
    formatted_response = ""
    for line in combined_response.split("\n"):
        formatted_response += f"{line}\n\n"
    return formatted_response

@app.post("/generate_multimodel")
async def api_generate_multimodel(request: Request):
    data = await request.json()
    message = data["message"]
    formatted_response = await process_message(message)
    return JSONResponse({"response": formatted_response})

iface = gr.Interface(
    fn=process_message,
    inputs=gr.Textbox(lines=2, placeholder="Enter your message here..."),
    outputs=gr.Markdown(),
    title="Multi-Model LLM API",
    description="Enter a message and get responses from a unified model.",
)

if __name__ == "__main__":
    port = int(os.environ.get("PORT", 7860))
    iface.launch(server_port=port)