laurenok24's picture
Upload 251 files
5209465 verified
raw
history blame
11.8 kB
# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# Written by Ke Sun ([email protected])
# Modified by Depu Meng ([email protected])
# ------------------------------------------------------------------------------
import argparse
import numpy as np
import matplotlib.pyplot as plt
import cv2
import json
import matplotlib.lines as mlines
import matplotlib.patches as mpatches
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
import os
class ColorStyle:
def __init__(self, color, link_pairs, point_color):
self.color = color
self.link_pairs = link_pairs
self.point_color = point_color
for i in range(len(self.color)):
self.link_pairs[i].append(tuple(np.array(self.color[i])/255.))
self.ring_color = []
for i in range(len(self.point_color)):
self.ring_color.append(tuple(np.array(self.point_color[i])/255.))
# Xiaochu Style
# (R,G,B)
color1 = [(179,0,0),(228,26,28),(255,255,51),
(49,163,84), (0,109,45), (255,255,51),
(240,2,127),(240,2,127),(240,2,127), (240,2,127), (240,2,127),
(217,95,14), (254,153,41),(255,255,51),
(44,127,184),(0,0,255)]
link_pairs1 = [
[15, 13], [13, 11], [11, 5],
[12, 14], [14, 16], [12, 6],
[3, 1],[1, 2],[1, 0],[0, 2],[2,4],
[9, 7], [7,5], [5, 6],
[6, 8], [8, 10],
]
point_color1 = [(240,2,127),(240,2,127),(240,2,127),
(240,2,127), (240,2,127),
(255,255,51),(255,255,51),
(254,153,41),(44,127,184),
(217,95,14),(0,0,255),
(255,255,51),(255,255,51),(228,26,28),
(49,163,84),(252,176,243),(0,176,240),
(255,255,0),(169, 209, 142),
(255,255,0),(169, 209, 142),
(255,255,0),(169, 209, 142)]
xiaochu_style = ColorStyle(color1, link_pairs1, point_color1)
# Chunhua Style
# (R,G,B)
color2 = [(252,176,243),(252,176,243),(252,176,243),
(0,176,240), (0,176,240), (0,176,240),
(240,2,127),(240,2,127),(240,2,127), (240,2,127), (240,2,127),
(255,255,0), (255,255,0),(169, 209, 142),
(169, 209, 142),(169, 209, 142)]
link_pairs2 = [
[15, 13], [13, 11], [11, 5],
[12, 14], [14, 16], [12, 6],
[3, 1],[1, 2],[1, 0],[0, 2],[2,4],
[9, 7], [7,5], [5, 6], [6, 8], [8, 10],
]
point_color2 = [(240,2,127),(240,2,127),(240,2,127),
(240,2,127), (240,2,127),
(255,255,0),(169, 209, 142),
(255,255,0),(169, 209, 142),
(255,255,0),(169, 209, 142),
(252,176,243),(0,176,240),(252,176,243),
(0,176,240),(252,176,243),(0,176,240),
(255,255,0),(169, 209, 142),
(255,255,0),(169, 209, 142),
(255,255,0),(169, 209, 142)]
chunhua_style = ColorStyle(color2, link_pairs2, point_color2)
def parse_args():
parser = argparse.ArgumentParser(description='Visualize COCO predictions')
# general
parser.add_argument('--image-path',
help='Path of COCO val images',
type=str,
default='data/coco/images/val2017/'
)
parser.add_argument('--gt-anno',
help='Path of COCO val annotation',
type=str,
default='data/coco/annotations/person_keypoints_val2017.json'
)
parser.add_argument('--save-path',
help="Path to save the visualizations",
type=str,
default='visualization/coco/')
parser.add_argument('--prediction',
help="Prediction file to visualize",
type=str,
required=True)
parser.add_argument('--style',
help="Style of the visualization: Chunhua style or Xiaochu style",
type=str,
default='chunhua')
args = parser.parse_args()
return args
def map_joint_dict(joints):
joints_dict = {}
for i in range(joints.shape[0]):
x = int(joints[i][0])
y = int(joints[i][1])
id = i
joints_dict[id] = (x, y)
return joints_dict
def plot(data, gt_file, img_path, save_path,
link_pairs, ring_color, save=True):
# joints
coco = COCO(gt_file)
coco_dt = coco.loadRes(data)
coco_eval = COCOeval(coco, coco_dt, 'keypoints')
coco_eval._prepare()
gts_ = coco_eval._gts
dts_ = coco_eval._dts
p = coco_eval.params
p.imgIds = list(np.unique(p.imgIds))
if p.useCats:
p.catIds = list(np.unique(p.catIds))
p.maxDets = sorted(p.maxDets)
# loop through images, area range, max detection number
catIds = p.catIds if p.useCats else [-1]
threshold = 0.3
joint_thres = 0.2
for catId in catIds:
for imgId in p.imgIds[:5000]:
# dimention here should be Nxm
gts = gts_[imgId, catId]
dts = dts_[imgId, catId]
inds = np.argsort([-d['score'] for d in dts], kind='mergesort')
dts = [dts[i] for i in inds]
if len(dts) > p.maxDets[-1]:
dts = dts[0:p.maxDets[-1]]
if len(gts) == 0 or len(dts) == 0:
continue
sum_score = 0
num_box = 0
img_name = str(imgId).zfill(12)
# Read Images
img_file = img_path + img_name + '.jpg'
data_numpy = cv2.imread(img_file, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
h = data_numpy.shape[0]
w = data_numpy.shape[1]
# Plot
fig = plt.figure(figsize=(w/100, h/100), dpi=100)
ax = plt.subplot(1,1,1)
bk = plt.imshow(data_numpy[:,:,::-1])
bk.set_zorder(-1)
print(img_name)
for j, gt in enumerate(gts):
# matching dt_box and gt_box
bb = gt['bbox']
x0 = bb[0] - bb[2]; x1 = bb[0] + bb[2] * 2
y0 = bb[1] - bb[3]; y1 = bb[1] + bb[3] * 2
# create bounds for ignore regions(double the gt bbox)
g = np.array(gt['keypoints'])
#xg = g[0::3]; yg = g[1::3];
vg = g[2::3]
for i, dt in enumerate(dts):
# Calculate IoU
dt_bb = dt['bbox']
dt_x0 = dt_bb[0] - dt_bb[2]; dt_x1 = dt_bb[0] + dt_bb[2] * 2
dt_y0 = dt_bb[1] - dt_bb[3]; dt_y1 = dt_bb[1] + dt_bb[3] * 2
ol_x = min(x1, dt_x1) - max(x0, dt_x0)
ol_y = min(y1, dt_y1) - max(y0, dt_y0)
ol_area = ol_x * ol_y
s_x = max(x1, dt_x1) - min(x0, dt_x0)
s_y = max(y1, dt_y1) - min(y0, dt_y0)
sum_area = s_x * s_y
iou = ol_area / (sum_area + np.spacing(1))
score = dt['score']
if iou < 0.1 or score < threshold:
continue
else:
print('iou: ', iou)
dt_w = dt_x1 - dt_x0
dt_h = dt_y1 - dt_y0
ref = min(dt_w, dt_h)
num_box += 1
sum_score += dt['score']
dt_joints = np.array(dt['keypoints']).reshape(17,-1)
joints_dict = map_joint_dict(dt_joints)
# stick
for k, link_pair in enumerate(link_pairs):
if link_pair[0] in joints_dict \
and link_pair[1] in joints_dict:
if dt_joints[link_pair[0],2] < joint_thres \
or dt_joints[link_pair[1],2] < joint_thres \
or vg[link_pair[0]] == 0 \
or vg[link_pair[1]] == 0:
continue
if k in range(6,11):
lw = 1
else:
lw = ref / 100.
line = mlines.Line2D(
np.array([joints_dict[link_pair[0]][0],
joints_dict[link_pair[1]][0]]),
np.array([joints_dict[link_pair[0]][1],
joints_dict[link_pair[1]][1]]),
ls='-', lw=lw, alpha=1, color=link_pair[2],)
line.set_zorder(0)
ax.add_line(line)
# black ring
for k in range(dt_joints.shape[0]):
if dt_joints[k,2] < joint_thres \
or vg[link_pair[0]] == 0 \
or vg[link_pair[1]] == 0:
continue
if dt_joints[k,0] > w or dt_joints[k,1] > h:
continue
if k in range(5):
radius = 1
else:
radius = ref / 100
circle = mpatches.Circle(tuple(dt_joints[k,:2]),
radius=radius,
ec='black',
fc=ring_color[k],
alpha=1,
linewidth=1)
circle.set_zorder(1)
ax.add_patch(circle)
avg_score = (sum_score / (num_box+np.spacing(1)))*1000
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.gca().yaxis.set_major_locator(plt.NullLocator())
plt.axis('off')
plt.subplots_adjust(top=1,bottom=0,left=0,right=1,hspace=0,wspace=0)
plt.margins(0,0)
if save:
plt.savefig(save_path + \
'score_'+str(np.int(avg_score))+ \
'_id_'+str(imgId)+ \
'_'+img_name + '.png',
format='png', bbox_inckes='tight', dpi=100)
plt.savefig(save_path +'id_'+str(imgId)+ '.pdf', format='pdf',
bbox_inckes='tight', dpi=100)
# plt.show()
plt.close()
if __name__ == '__main__':
args = parse_args()
if args.style == 'xiaochu':
# Xiaochu Style
colorstyle = xiaochu_style
elif args.style == 'chunhua':
# Chunhua Style
colorstyle = chunhua_style
else:
raise Exception('Invalid color style')
save_path = args.save_path
img_path = args.image_path
if not os.path.exists(save_path):
try:
os.makedirs(save_path)
except Exception:
print('Fail to make {}'.format(save_path))
with open(args.prediction) as f:
data = json.load(f)
gt_file = args.gt_anno
plot(data, gt_file, img_path, save_path, colorstyle.link_pairs, colorstyle.ring_color, save=True)