laurenok24's picture
Upload 251 files
5209465 verified
raw
history blame
7.04 kB
# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# Written by Bin Xiao ([email protected])
# ------------------------------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import logging
import time
from collections import namedtuple
from pathlib import Path
import torch
import torch.optim as optim
import torch.nn as nn
def create_logger(cfg, cfg_name, phase='train'):
root_output_dir = Path(cfg.OUTPUT_DIR)
# set up logger
if not root_output_dir.exists():
print('=> creating {}'.format(root_output_dir))
root_output_dir.mkdir()
dataset = cfg.DATASET.DATASET + '_' + cfg.DATASET.HYBRID_JOINTS_TYPE \
if cfg.DATASET.HYBRID_JOINTS_TYPE else cfg.DATASET.DATASET
dataset = dataset.replace(':', '_')
model = cfg.MODEL.NAME
cfg_name = os.path.basename(cfg_name).split('.')[0]
final_output_dir = root_output_dir / dataset / model / cfg_name
print('=> creating {}'.format(final_output_dir))
final_output_dir.mkdir(parents=True, exist_ok=True)
time_str = time.strftime('%Y-%m-%d-%H-%M')
log_file = '{}_{}_{}.log'.format(cfg_name, time_str, phase)
final_log_file = final_output_dir / log_file
head = '%(asctime)-15s %(message)s'
logging.basicConfig(filename=str(final_log_file),
format=head)
logger = logging.getLogger()
logger.setLevel(logging.INFO)
console = logging.StreamHandler()
logging.getLogger('').addHandler(console)
tensorboard_log_dir = Path(cfg.LOG_DIR) / dataset / model / \
(cfg_name + '_' + time_str)
print('=> creating {}'.format(tensorboard_log_dir))
tensorboard_log_dir.mkdir(parents=True, exist_ok=True)
return logger, str(final_output_dir), str(tensorboard_log_dir)
def get_optimizer(cfg, model):
optimizer = None
if cfg.TRAIN.OPTIMIZER == 'sgd':
optimizer = optim.SGD(
model.parameters(),
lr=cfg.TRAIN.LR,
momentum=cfg.TRAIN.MOMENTUM,
weight_decay=cfg.TRAIN.WD,
nesterov=cfg.TRAIN.NESTEROV
)
elif cfg.TRAIN.OPTIMIZER == 'adam':
optimizer = optim.Adam(
model.parameters(),
lr=cfg.TRAIN.LR
)
return optimizer
def save_checkpoint(states, is_best, output_dir,
filename='checkpoint.pth'):
torch.save(states, os.path.join(output_dir, filename))
if is_best and 'state_dict' in states:
torch.save(states['best_state_dict'],
os.path.join(output_dir, 'model_best.pth'))
def get_model_summary(model, *input_tensors, item_length=26, verbose=False):
"""
:param model:
:param input_tensors:
:param item_length:
:return:
"""
summary = []
ModuleDetails = namedtuple(
"Layer", ["name", "input_size", "output_size", "num_parameters", "multiply_adds"])
hooks = []
layer_instances = {}
def add_hooks(module):
def hook(module, input, output):
class_name = str(module.__class__.__name__)
instance_index = 1
if class_name not in layer_instances:
layer_instances[class_name] = instance_index
else:
instance_index = layer_instances[class_name] + 1
layer_instances[class_name] = instance_index
layer_name = class_name + "_" + str(instance_index)
params = 0
if class_name.find("Conv") != -1 or class_name.find("BatchNorm") != -1 or \
class_name.find("Linear") != -1:
for param_ in module.parameters():
params += param_.view(-1).size(0)
flops = "Not Available"
if class_name.find("Conv") != -1 and hasattr(module, "weight"):
flops = (
torch.prod(
torch.LongTensor(list(module.weight.data.size()))) *
torch.prod(
torch.LongTensor(list(output.size())[2:]))).item()
elif isinstance(module, nn.Linear):
flops = (torch.prod(torch.LongTensor(list(output.size()))) \
* input[0].size(1)).item()
if isinstance(input[0], list):
input = input[0]
if isinstance(output, list):
output = output[0]
summary.append(
ModuleDetails(
name=layer_name,
input_size=list(input[0].size()),
output_size=list(output.size()),
num_parameters=params,
multiply_adds=flops)
)
if not isinstance(module, nn.ModuleList) \
and not isinstance(module, nn.Sequential) \
and module != model:
hooks.append(module.register_forward_hook(hook))
model.eval()
model.apply(add_hooks)
space_len = item_length
model(*input_tensors)
for hook in hooks:
hook.remove()
details = ''
if verbose:
details = "Model Summary" + \
os.linesep + \
"Name{}Input Size{}Output Size{}Parameters{}Multiply Adds (Flops){}".format(
' ' * (space_len - len("Name")),
' ' * (space_len - len("Input Size")),
' ' * (space_len - len("Output Size")),
' ' * (space_len - len("Parameters")),
' ' * (space_len - len("Multiply Adds (Flops)"))) \
+ os.linesep + '-' * space_len * 5 + os.linesep
params_sum = 0
flops_sum = 0
for layer in summary:
params_sum += layer.num_parameters
if layer.multiply_adds != "Not Available":
flops_sum += layer.multiply_adds
if verbose:
details += "{}{}{}{}{}{}{}{}{}{}".format(
layer.name,
' ' * (space_len - len(layer.name)),
layer.input_size,
' ' * (space_len - len(str(layer.input_size))),
layer.output_size,
' ' * (space_len - len(str(layer.output_size))),
layer.num_parameters,
' ' * (space_len - len(str(layer.num_parameters))),
layer.multiply_adds,
' ' * (space_len - len(str(layer.multiply_adds)))) \
+ os.linesep + '-' * space_len * 5 + os.linesep
details += os.linesep \
+ "Total Parameters: {:,}".format(params_sum) \
+ os.linesep + '-' * space_len * 5 + os.linesep
details += "Total Multiply Adds (For Convolution and Linear Layers only): {:,} GFLOPs".format(flops_sum/(1024**3)) \
+ os.linesep + '-' * space_len * 5 + os.linesep
details += "Number of Layers" + os.linesep
for layer in layer_instances:
details += "{} : {} layers ".format(layer, layer_instances[layer])
return details