|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import absolute_import |
|
from __future__ import division |
|
from __future__ import print_function |
|
|
|
import numpy as np |
|
cimport numpy as np |
|
|
|
cdef inline np.float32_t max(np.float32_t a, np.float32_t b): |
|
return a if a >= b else b |
|
|
|
cdef inline np.float32_t min(np.float32_t a, np.float32_t b): |
|
return a if a <= b else b |
|
|
|
def cpu_nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh): |
|
cdef np.ndarray[np.float32_t, ndim=1] x1 = dets[:, 0] |
|
cdef np.ndarray[np.float32_t, ndim=1] y1 = dets[:, 1] |
|
cdef np.ndarray[np.float32_t, ndim=1] x2 = dets[:, 2] |
|
cdef np.ndarray[np.float32_t, ndim=1] y2 = dets[:, 3] |
|
cdef np.ndarray[np.float32_t, ndim=1] scores = dets[:, 4] |
|
|
|
cdef np.ndarray[np.float32_t, ndim=1] areas = (x2 - x1 + 1) * (y2 - y1 + 1) |
|
cdef np.ndarray[np.int_t, ndim=1] order = scores.argsort()[::-1].astype('i') |
|
|
|
cdef int ndets = dets.shape[0] |
|
cdef np.ndarray[np.int_t, ndim=1] suppressed = \ |
|
np.zeros((ndets), dtype=np.int) |
|
|
|
|
|
cdef int _i, _j |
|
|
|
cdef int i, j |
|
|
|
cdef np.float32_t ix1, iy1, ix2, iy2, iarea |
|
|
|
cdef np.float32_t xx1, yy1, xx2, yy2 |
|
cdef np.float32_t w, h |
|
cdef np.float32_t inter, ovr |
|
|
|
keep = [] |
|
for _i in range(ndets): |
|
i = order[_i] |
|
if suppressed[i] == 1: |
|
continue |
|
keep.append(i) |
|
ix1 = x1[i] |
|
iy1 = y1[i] |
|
ix2 = x2[i] |
|
iy2 = y2[i] |
|
iarea = areas[i] |
|
for _j in range(_i + 1, ndets): |
|
j = order[_j] |
|
if suppressed[j] == 1: |
|
continue |
|
xx1 = max(ix1, x1[j]) |
|
yy1 = max(iy1, y1[j]) |
|
xx2 = min(ix2, x2[j]) |
|
yy2 = min(iy2, y2[j]) |
|
w = max(0.0, xx2 - xx1 + 1) |
|
h = max(0.0, yy2 - yy1 + 1) |
|
inter = w * h |
|
ovr = inter / (iarea + areas[j] - inter) |
|
if ovr >= thresh: |
|
suppressed[j] = 1 |
|
|
|
return keep |
|
|