laurenok24's picture
Upload 251 files
5209465 verified
raw
history blame
16 kB
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import csv
import os
import shutil
from PIL import Image
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision
import cv2
import numpy as np
import time
import _init_paths
import models
from config import cfg
from config import update_config
from core.function import get_final_preds
from utils.transforms import get_affine_transform
import sys, os, distutils.core
# os.system('python -m pip install pyyaml==5.3.1')
# dist = distutils.core.run_setup("./detectron2/setup.py")
# temp = ' '.join([f"'{x}'" for x in dist.install_requires])
# cmd = "python -m pip install {0}".format(temp)
# os.system(cmd)
sys.path.insert(0, os.path.abspath('./detectron2'))
import detectron2
# from detectron2.modeling import build_model
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.utils.visualizer import Visualizer
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.data.datasets import register_coco_instances
from detectron2.utils.visualizer import ColorMode
COCO_KEYPOINT_INDEXES = {
0: 'r ankle',
1: 'r knee',
2: 'r hip',
3: 'l hip',
4: 'l knee',
5: 'l ankle',
6: 'pelvis',
7: 'thorax',
8: 'upper neck',
9: 'head',
10: 'r wrist',
11: 'r elbow',
12: 'r shoulder',
13: 'l shoulder',
14: 'l elbow',
15: 'l wrist',
}
COCO_INSTANCE_CATEGORY_NAMES = [
'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
]
SKELETON = [
[1,2],[1,0],[2,6],[3,6],[4,5],[3,4],[6,7],[7,8],[9,8],[7,12],[7,13],[11,12],[13,14],[14,15],[10,11]
]
CocoColors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0],
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255],
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
NUM_KPTS = 16
CTX = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
def draw_pose(keypoints,img):
"""draw the keypoints and the skeletons.
:params keypoints: the shape should be equal to [17,2]
:params img:
"""
assert keypoints.shape == (NUM_KPTS,2)
for i in range(len(SKELETON)):
kpt_a, kpt_b = SKELETON[i][0], SKELETON[i][1]
x_a, y_a = keypoints[kpt_a][0],keypoints[kpt_a][1]
x_b, y_b = keypoints[kpt_b][0],keypoints[kpt_b][1]
cv2.circle(img, (int(x_a), int(y_a)), 6, CocoColors[i], -1)
cv2.circle(img, (int(x_b), int(y_b)), 6, CocoColors[i], -1)
cv2.line(img, (int(x_a), int(y_a)), (int(x_b), int(y_b)), CocoColors[i], 2)
def draw_bbox(box,img):
"""draw the detected bounding box on the image.
:param img:
"""
# cv2.rectangle(img, (int(box[0][0]), int(box[0][1])), (int(box[1][0]), int(box[1][1])), (0, 255, 0),3)
cv2.rectangle(img, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), (0, 255, 0),3)
def get_person_detection_boxes(model, img, threshold=0.5):
pred = model(img)
pred_classes = [COCO_INSTANCE_CATEGORY_NAMES[i]
for i in list(pred[0]['labels'].cpu().numpy())] # Get the Prediction Score
pred_boxes = [[(i[0], i[1]), (i[2], i[3])]
for i in list(pred[0]['boxes'].detach().cpu().numpy())] # Bounding boxes
pred_score = list(pred[0]['scores'].detach().cpu().numpy())
print(max(pred_score))
if not pred_score or max(pred_score)<threshold:
print("pred_score didn't make threshold")
return []
# Get list of index with score greater than threshold
pred_t = [pred_score.index(x) for x in pred_score if x > threshold][-1]
pred_boxes = pred_boxes[:pred_t+1]
pred_classes = pred_classes[:pred_t+1]
print('pred_boxes', pred_boxes)
person_boxes = []
for idx, box in enumerate(pred_boxes):
if pred_classes[idx] == 'person':
person_boxes.append(box)
print("person_boxes", person_boxes)
return person_boxes
def get_pose_estimation_prediction(pose_model, image, center, scale):
rotation = 0
# pose estimation transformation
# srcTri = np.array( [[0, 0], [image.shape[1] - 1, 0], [0, image.shape[0] - 1]] ).astype(np.float32)
# dstTri = np.array( [[0, image.shape[1]*0.33], [image.shape[1]*0.85, image.shape[0]*0.25], [image.shape[1]*0.15, image.shape[0]*0.7]] ).astype(np.float32)
trans = get_affine_transform(center, scale, rotation, cfg.MODEL.IMAGE_SIZE)
# trans = cv2.getAffineTransform(srcTri, dstTri)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
print("scale:", scale)
print("center:", center)
print("trans:", trans)
# print("transform:", transform)
# print("transform.normalize:", transforms.Normalize(mean=[0.485, 0.456, 0.406],
# std=[0.229, 0.224, 0.225]))
# model_input = cv2.warpAffine(
# image,
# trans,
# (int(cfg.MODEL.IMAGE_SIZE[0]), int(cfg.MODEL.IMAGE_SIZE[1])),
# flags=cv2.INTER_LINEAR)
model_input = cv2.warpAffine(
image,
trans,
(256, 256),
flags=cv2.INTER_LINEAR)
# # pose estimation inference
model_input = transform(model_input).unsqueeze(0)
# switch to evaluate mode
pose_model.eval()
with torch.no_grad():
# compute output heatmap
output = pose_model(model_input)
print('hi')
preds, _ = get_final_preds(
cfg,
output.clone().cpu().numpy(),
np.asarray([center]),
np.asarray([scale]))
return preds
def box_to_center_scale(box, model_image_width, model_image_height):
"""convert a box to center,scale information required for pose transformation
Parameters
----------
box : list of tuple
list of length 2 with two tuples of floats representing
bottom left and top right corner of a box
model_image_width : int
model_image_height : int
Returns
-------
(numpy array, numpy array)
Two numpy arrays, coordinates for the center of the box and the scale of the box
"""
center = np.zeros((2), dtype=np.float32)
bottom_left_corner = (box[0].data.cpu().item(), box[1].data.cpu().item())
top_right_corner = (box[2].data.cpu().item(), box[3].data.cpu().item())
box_width = top_right_corner[0]-bottom_left_corner[0]
box_height = top_right_corner[1]-bottom_left_corner[1]
bottom_left_x = bottom_left_corner[0]
bottom_left_y = bottom_left_corner[1]
center[0] = bottom_left_x + box_width * 0.5
center[1] = bottom_left_y + box_height * 0.5
aspect_ratio = model_image_width * 1.0 / model_image_height
pixel_std = 200
if box_width > aspect_ratio * box_height:
box_height = box_width * 1.0 / aspect_ratio
elif box_width < aspect_ratio * box_height:
box_width = box_height * aspect_ratio
scale = np.array(
[box_width * 1.0 / pixel_std, box_height * 1.0 / pixel_std],
dtype=np.float32)
if center[0] != -1:
scale = scale * 1.25
return center, scale
def parse_args():
parser = argparse.ArgumentParser(description='Train keypoints network')
# general
parser.add_argument('--cfg', type=str, default='demo/inference-config.yaml')
parser.add_argument('--video', type=str)
parser.add_argument('--webcam',action='store_true')
parser.add_argument('--image',type=str)
parser.add_argument('--write',action='store_true')
parser.add_argument('--showFps',action='store_true')
parser.add_argument('opts',
help='Modify config options using the command-line',
default=None,
nargs=argparse.REMAINDER)
args = parser.parse_args()
# args expected by supporting codebase
args.modelDir = ''
args.logDir = ''
args.dataDir = ''
args.prevModelDir = ''
return args
def main():
# cudnn related setting
cudnn.benchmark = cfg.CUDNN.BENCHMARK
torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC
torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED
args = parse_args()
update_config(cfg, args)
# box_model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
# box_model.to(CTX)
# box_model.eval()
cfgg = get_cfg()
cfgg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfgg.OUTPUT_DIR = "./output/diver/"
cfgg.MODEL.WEIGHTS = os.path.join(cfgg.OUTPUT_DIR, "model_final.pth") # path to the model we just trained
cfgg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set a custom testing threshold
cfgg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 128 # The "RoIHead batch size". 128 is faster, and good enough for this toy dataset (default: 512)
cfgg.MODEL.ROI_HEADS.NUM_CLASSES = 1 # only has one class (ballon). (see https://detectron2.readthedocs.io/tutorials/datasets.html#update-the-config-for-new-datasets)
predictor = DefaultPredictor(cfgg)
# register_coco_instances("diver_vals", {}, "./coco_annotations/diver/val.json", "../data/ExPose/Olympics2012_Diving_2570")
# splash_metadata = MetadataCatalog.get('splash_vals')
# dataset_dicts = DatasetCatalog.get("splash_vals")
pose_model = eval('models.'+cfg.MODEL.NAME+'.get_pose_net')(
cfg, is_train=False
)
if cfg.TEST.MODEL_FILE:
print('=> loading model from {}'.format(cfg.TEST.MODEL_FILE))
pose_model.load_state_dict(torch.load(cfg.TEST.MODEL_FILE), strict=False)
else:
print('expected model defined in config at TEST.MODEL_FILE')
pose_model = torch.nn.DataParallel(pose_model, device_ids=cfg.GPUS)
pose_model.to(CTX)
pose_model.eval()
# Loading an video or an image or webcam
if args.webcam:
vidcap = cv2.VideoCapture(0)
elif args.video:
vidcap = cv2.VideoCapture(args.video)
elif args.image:
image_bgr = cv2.imread(args.image)
else:
print('please use --video or --webcam or --image to define the input.')
return
if args.webcam or args.video:
if args.write:
save_path = 'output.avi'
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter(save_path,fourcc, 24.0, (int(vidcap.get(3)),int(vidcap.get(4))))
while True:
ret, image_bgr = vidcap.read()
if ret:
last_time = time.time()
image = image_bgr[:, :, [2, 1, 0]]
input = []
img = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
img_tensor = torch.from_numpy(img/255.).permute(2,0,1).float().to(CTX)
input.append(img_tensor)
# object detection box
pred_boxes = get_person_detection_boxes(box_model, input, threshold=0.5)
# pose estimation
if len(pred_boxes) >= 1:
for box in pred_boxes:
center, scale = box_to_center_scale(box, cfg.MODEL.IMAGE_SIZE[0], cfg.MODEL.IMAGE_SIZE[1])
image_pose = image.copy() if cfg.DATASET.COLOR_RGB else image_bgr.copy()
pose_preds = get_pose_estimation_prediction(pose_model, image_pose, center, scale)
if len(pose_preds)>=1:
for kpt in pose_preds:
draw_pose(kpt,image_bgr) # draw the poses
if args.showFps:
fps = 1/(time.time()-last_time)
img = cv2.putText(image_bgr, 'fps: '+ "%.2f"%(fps), (25, 40), cv2.FONT_HERSHEY_SIMPLEX, 1.2, (0, 255, 0), 2)
if args.write:
out.write(image_bgr)
cv2.imshow('demo',image_bgr)
if cv2.waitKey(1) & 0XFF==ord('q'):
break
else:
print('cannot load the video.')
break
cv2.destroyAllWindows()
vidcap.release()
if args.write:
print('video has been saved as {}'.format(save_path))
out.release()
else:
# estimate on the image
last_time = time.time()
image = image_bgr[:, :, [2, 1, 0]]
input = []
img = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
img_tensor = torch.from_numpy(img/255.).permute(2,0,1).float().to(CTX)
input.append(img_tensor)
# object detection box
# pred_boxes = get_person_detection_boxes(box_model, input, threshold=0.5)
outputs = predictor(image_bgr)
scores = outputs['instances'].scores
pred_boxes = []
if len(scores) > 0:
pred_boxes = outputs['instances'].pred_boxes
# max_instance = torch.argmax(scores)
# print(pred_boxes)
# pred_boxes = pred_boxes[max_instance]
print("pred_boxes", pred_boxes)
# pose estimation
if len(pred_boxes) >= 1:
for box in pred_boxes:
center, scale = box_to_center_scale(box, cfg.MODEL.IMAGE_SIZE[0], cfg.MODEL.IMAGE_SIZE[1])
# center, scale = box_to_center_scale(box, 360, 640)
image_pose = image.copy() if cfg.DATASET.COLOR_RGB else image_bgr.copy()
pose_preds = get_pose_estimation_prediction(pose_model, image_pose, center, scale)
print("pose_preds", pose_preds)
draw_bbox(box,image_bgr)
if len(pose_preds)>=1:
print('drawing preds')
for kpt in pose_preds:
draw_pose(kpt,image_bgr) # draw the poses
break # only want to use the box with the highest confidence score
if args.showFps:
fps = 1/(time.time()-last_time)
img = cv2.putText(image_bgr, 'fps: '+ "%.2f"%(fps), (25, 40), cv2.FONT_HERSHEY_SIMPLEX, 1.2, (0, 255, 0), 2)
if args.write:
out_folder = './output/pose-estimator/FINAWorldChampionships2019_Women10m_final_r1_0'
save_path = '{}/{}'.format(out_folder, args.image.split('/')[-1])
if not os.path.exists(out_folder):
os.makedirs(out_folder)
cv2.imwrite(save_path,image_bgr)
print('the result image has been saved as {}'.format(save_path))
# cv2.imshow('demo',image_bgr)
# if cv2.waitKey(0) & 0XFF==ord('q'):
# cv2.destroyAllWindows()
if __name__ == '__main__':
main()