File size: 6,856 Bytes
5209465 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# Written by Bin Xiao ([email protected])
# ------------------------------------------------------------------------------
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import pprint
import shutil
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from tensorboardX import SummaryWriter
import _init_paths
from config import cfg
from config import update_config
from core.loss import JointsMSELoss
from core.function import train
from core.function import validate
from utils.utils import get_optimizer
from utils.utils import save_checkpoint
from utils.utils import create_logger
from utils.utils import get_model_summary
import dataset
import models
def parse_args():
parser = argparse.ArgumentParser(description='Train keypoints network')
# general
parser.add_argument('--cfg',
help='experiment configure file name',
required=True,
type=str)
parser.add_argument('opts',
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER)
# philly
parser.add_argument('--modelDir',
help='model directory',
type=str,
default='')
parser.add_argument('--logDir',
help='log directory',
type=str,
default='')
parser.add_argument('--dataDir',
help='data directory',
type=str,
default='')
parser.add_argument('--prevModelDir',
help='prev Model directory',
type=str,
default='')
args = parser.parse_args()
return args
def main():
args = parse_args()
update_config(cfg, args)
logger, final_output_dir, tb_log_dir = create_logger(
cfg, args.cfg, 'train')
logger.info(pprint.pformat(args))
logger.info(cfg)
# cudnn related setting
cudnn.benchmark = cfg.CUDNN.BENCHMARK
torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC
torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED
model = eval('models.'+cfg.MODEL.NAME+'.get_pose_net')(
cfg, is_train=True
)
# copy model file
this_dir = os.path.dirname(__file__)
shutil.copy2(
os.path.join(this_dir, '../lib/models', cfg.MODEL.NAME + '.py'),
final_output_dir)
# logger.info(pprint.pformat(model))
writer_dict = {
'writer': SummaryWriter(log_dir=tb_log_dir),
'train_global_steps': 0,
'valid_global_steps': 0,
}
dump_input = torch.rand(
(1, 3, cfg.MODEL.IMAGE_SIZE[1], cfg.MODEL.IMAGE_SIZE[0])
)
writer_dict['writer'].add_graph(model, (dump_input, ))
logger.info(get_model_summary(model, dump_input))
model = torch.nn.DataParallel(model, device_ids=cfg.GPUS).cuda()
# define loss function (criterion) and optimizer
criterion = JointsMSELoss(
use_target_weight=cfg.LOSS.USE_TARGET_WEIGHT
).cuda()
# Data loading code
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
train_dataset = eval('dataset.'+cfg.DATASET.DATASET)(
cfg, cfg.DATASET.ROOT, cfg.DATASET.TRAIN_SET, True,
transforms.Compose([
transforms.ToTensor(),
normalize,
])
)
valid_dataset = eval('dataset.'+cfg.DATASET.DATASET)(
cfg, cfg.DATASET.ROOT, cfg.DATASET.TEST_SET, False,
transforms.Compose([
transforms.ToTensor(),
normalize,
])
)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=cfg.TRAIN.BATCH_SIZE_PER_GPU*len(cfg.GPUS),
shuffle=cfg.TRAIN.SHUFFLE,
num_workers=cfg.WORKERS,
pin_memory=cfg.PIN_MEMORY
)
valid_loader = torch.utils.data.DataLoader(
valid_dataset,
batch_size=cfg.TEST.BATCH_SIZE_PER_GPU*len(cfg.GPUS),
shuffle=False,
num_workers=cfg.WORKERS,
pin_memory=cfg.PIN_MEMORY
)
best_perf = 0.0
best_model = False
last_epoch = -1
optimizer = get_optimizer(cfg, model)
begin_epoch = cfg.TRAIN.BEGIN_EPOCH
checkpoint_file = os.path.join(
final_output_dir, 'checkpoint.pth'
)
if cfg.AUTO_RESUME and os.path.exists(checkpoint_file):
logger.info("=> loading checkpoint '{}'".format(checkpoint_file))
checkpoint = torch.load(checkpoint_file)
begin_epoch = checkpoint['epoch']
best_perf = checkpoint['perf']
last_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
logger.info("=> loaded checkpoint '{}' (epoch {})".format(
checkpoint_file, checkpoint['epoch']))
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, cfg.TRAIN.LR_STEP, cfg.TRAIN.LR_FACTOR,
last_epoch=last_epoch
)
for epoch in range(begin_epoch, cfg.TRAIN.END_EPOCH):
lr_scheduler.step()
# train for one epoch
train(cfg, train_loader, model, criterion, optimizer, epoch,
final_output_dir, tb_log_dir, writer_dict)
# evaluate on validation set
perf_indicator = validate(
cfg, valid_loader, valid_dataset, model, criterion,
final_output_dir, tb_log_dir, writer_dict
)
if perf_indicator >= best_perf:
best_perf = perf_indicator
best_model = True
print("best model so far!")
else:
best_model = False
logger.info('=> saving checkpoint to {}'.format(final_output_dir))
save_checkpoint({
'epoch': epoch + 1,
'model': cfg.MODEL.NAME,
'state_dict': model.state_dict(),
'best_state_dict': model.module.state_dict(),
'perf': perf_indicator,
'optimizer': optimizer.state_dict(),
}, best_model, final_output_dir)
final_model_state_file = os.path.join(
final_output_dir, 'final_state.pth'
)
logger.info('=> saving final model state to {}'.format(
final_model_state_file)
)
torch.save(model.module.state_dict(), final_model_state_file)
writer_dict['writer'].close()
if __name__ == '__main__':
main()
|