File size: 5,062 Bytes
5209465 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
// ------------------------------------------------------------------
// Copyright (c) Microsoft
// Licensed under The MIT License
// Modified from MATLAB Faster R-CNN (https://github.com/shaoqingren/faster_rcnn)
// ------------------------------------------------------------------
#include "gpu_nms.hpp"
#include <vector>
#include <iostream>
#define CUDA_CHECK(condition) \
/* Code block avoids redefinition of cudaError_t error */ \
do { \
cudaError_t error = condition; \
if (error != cudaSuccess) { \
std::cout << cudaGetErrorString(error) << std::endl; \
} \
} while (0)
#define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0))
int const threadsPerBlock = sizeof(unsigned long long) * 8;
__device__ inline float devIoU(float const * const a, float const * const b) {
float left = max(a[0], b[0]), right = min(a[2], b[2]);
float top = max(a[1], b[1]), bottom = min(a[3], b[3]);
float width = max(right - left + 1, 0.f), height = max(bottom - top + 1, 0.f);
float interS = width * height;
float Sa = (a[2] - a[0] + 1) * (a[3] - a[1] + 1);
float Sb = (b[2] - b[0] + 1) * (b[3] - b[1] + 1);
return interS / (Sa + Sb - interS);
}
__global__ void nms_kernel(const int n_boxes, const float nms_overlap_thresh,
const float *dev_boxes, unsigned long long *dev_mask) {
const int row_start = blockIdx.y;
const int col_start = blockIdx.x;
// if (row_start > col_start) return;
const int row_size =
min(n_boxes - row_start * threadsPerBlock, threadsPerBlock);
const int col_size =
min(n_boxes - col_start * threadsPerBlock, threadsPerBlock);
__shared__ float block_boxes[threadsPerBlock * 5];
if (threadIdx.x < col_size) {
block_boxes[threadIdx.x * 5 + 0] =
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 0];
block_boxes[threadIdx.x * 5 + 1] =
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 1];
block_boxes[threadIdx.x * 5 + 2] =
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 2];
block_boxes[threadIdx.x * 5 + 3] =
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 3];
block_boxes[threadIdx.x * 5 + 4] =
dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 4];
}
__syncthreads();
if (threadIdx.x < row_size) {
const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x;
const float *cur_box = dev_boxes + cur_box_idx * 5;
int i = 0;
unsigned long long t = 0;
int start = 0;
if (row_start == col_start) {
start = threadIdx.x + 1;
}
for (i = start; i < col_size; i++) {
if (devIoU(cur_box, block_boxes + i * 5) > nms_overlap_thresh) {
t |= 1ULL << i;
}
}
const int col_blocks = DIVUP(n_boxes, threadsPerBlock);
dev_mask[cur_box_idx * col_blocks + col_start] = t;
}
}
void _set_device(int device_id) {
int current_device;
CUDA_CHECK(cudaGetDevice(¤t_device));
if (current_device == device_id) {
return;
}
// The call to cudaSetDevice must come before any calls to Get, which
// may perform initialization using the GPU.
CUDA_CHECK(cudaSetDevice(device_id));
}
void _nms(int* keep_out, int* num_out, const float* boxes_host, int boxes_num,
int boxes_dim, float nms_overlap_thresh, int device_id) {
_set_device(device_id);
float* boxes_dev = NULL;
unsigned long long* mask_dev = NULL;
const int col_blocks = DIVUP(boxes_num, threadsPerBlock);
CUDA_CHECK(cudaMalloc(&boxes_dev,
boxes_num * boxes_dim * sizeof(float)));
CUDA_CHECK(cudaMemcpy(boxes_dev,
boxes_host,
boxes_num * boxes_dim * sizeof(float),
cudaMemcpyHostToDevice));
CUDA_CHECK(cudaMalloc(&mask_dev,
boxes_num * col_blocks * sizeof(unsigned long long)));
dim3 blocks(DIVUP(boxes_num, threadsPerBlock),
DIVUP(boxes_num, threadsPerBlock));
dim3 threads(threadsPerBlock);
nms_kernel<<<blocks, threads>>>(boxes_num,
nms_overlap_thresh,
boxes_dev,
mask_dev);
std::vector<unsigned long long> mask_host(boxes_num * col_blocks);
CUDA_CHECK(cudaMemcpy(&mask_host[0],
mask_dev,
sizeof(unsigned long long) * boxes_num * col_blocks,
cudaMemcpyDeviceToHost));
std::vector<unsigned long long> remv(col_blocks);
memset(&remv[0], 0, sizeof(unsigned long long) * col_blocks);
int num_to_keep = 0;
for (int i = 0; i < boxes_num; i++) {
int nblock = i / threadsPerBlock;
int inblock = i % threadsPerBlock;
if (!(remv[nblock] & (1ULL << inblock))) {
keep_out[num_to_keep++] = i;
unsigned long long *p = &mask_host[0] + i * col_blocks;
for (int j = nblock; j < col_blocks; j++) {
remv[j] |= p[j];
}
}
}
*num_out = num_to_keep;
CUDA_CHECK(cudaFree(boxes_dev));
CUDA_CHECK(cudaFree(mask_dev));
}
|