File size: 6,845 Bytes
5209465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# Written by Bin Xiao ([email protected])
# ------------------------------------------------------------------------------

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import logging
import os
import json_tricks as json
from collections import OrderedDict

import numpy as np
from scipy.io import loadmat, savemat

from dataset.JointsDataset import JointsDataset


logger = logging.getLogger(__name__)


class MPIIDataset(JointsDataset):
    def __init__(self, cfg, root, image_set, is_train, transform=None):
        super().__init__(cfg, root, image_set, is_train, transform)

        self.num_joints = 16
        self.flip_pairs = [[0, 5], [1, 4], [2, 3], [10, 15], [11, 14], [12, 13]]
        self.parent_ids = [1, 2, 6, 6, 3, 4, 6, 6, 7, 8, 11, 12, 7, 7, 13, 14]

        self.upper_body_ids = (7, 8, 9, 10, 11, 12, 13, 14, 15)
        self.lower_body_ids = (0, 1, 2, 3, 4, 5, 6)

        self.db = self._get_db()

        if is_train and cfg.DATASET.SELECT_DATA:
            self.db = self.select_data(self.db)

        logger.info('=> load {} samples'.format(len(self.db)))

    def _get_db(self):
        # create train/val split
        file_name = os.path.join(
            self.root, 'annot', self.image_set+'.json'
        )
        with open(file_name) as anno_file:
            anno = json.load(anno_file)

        gt_db = []
        for a in anno:
            image_name = a['image']

            c = np.array(a['center'], dtype=float)
            s = np.array([a['scale'], a['scale']], dtype=float)

            # Adjust center/scale slightly to avoid cropping limbs
            if c[0] != -1:
                c[1] = c[1] + 15 * s[1]
                s = s * 1.25

            # MPII uses matlab format, index is based 1,
            # we should first convert to 0-based index
            c = c - 1

            joints_3d = np.zeros((self.num_joints, 3), dtype=float)
            joints_3d_vis = np.zeros((self.num_joints,  3), dtype=float)
            if self.image_set != 'test':
                joints = np.array(a['joints'])
                joints[:, 0:2] = joints[:, 0:2] - 1
                joints_vis = np.array(a['joints_vis'])
                assert len(joints) == self.num_joints, \
                    'joint num diff: {} vs {}'.format(len(joints),
                                                      self.num_joints)

                joints_3d[:, 0:2] = joints[:, 0:2]
                joints_3d_vis[:, 0] = joints_vis[:]
                joints_3d_vis[:, 1] = joints_vis[:]

            image_dir = 'images.zip@' if self.data_format == 'zip' else 'images'
            gt_db.append(
                {
                    'image': os.path.join(self.root, image_dir, image_name),
                    'center': c,
                    'scale': s,
                    'joints_3d': joints_3d,
                    'joints_3d_vis': joints_3d_vis,
                    'filename': '',
                    'imgnum': 0,
                }
            )

        return gt_db

    def evaluate(self, cfg, preds, output_dir, *args, **kwargs):
        # convert 0-based index to 1-based index
        preds = preds[:, :, 0:2] + 1.0

        if output_dir:
            pred_file = os.path.join(output_dir, 'pred.mat')
            savemat(pred_file, mdict={'preds': preds})

        if 'test' in cfg.DATASET.TEST_SET:
            return {'Null': 0.0}, 0.0

        SC_BIAS = 0.6
        threshold = 0.5

        gt_file = os.path.join(cfg.DATASET.ROOT,
                               'annot',
                               'gt_{}.mat'.format(cfg.DATASET.TEST_SET))
        gt_dict = loadmat(gt_file)
        dataset_joints = gt_dict['dataset_joints']
        jnt_missing = gt_dict['jnt_missing']
        pos_gt_src = gt_dict['pos_gt_src']
        # headboxes_src = gt_dict['headboxes_src']

        pos_pred_src = np.transpose(preds, [1, 2, 0])

        head = np.where(dataset_joints == 'head')[1][0]
        lsho = np.where(dataset_joints == 'lsho')[1][0]
        lelb = np.where(dataset_joints == 'lelb')[1][0]
        lwri = np.where(dataset_joints == 'lwri')[1][0]
        lhip = np.where(dataset_joints == 'lhip')[1][0]
        lkne = np.where(dataset_joints == 'lkne')[1][0]
        lank = np.where(dataset_joints == 'lank')[1][0]

        rsho = np.where(dataset_joints == 'rsho')[1][0]
        relb = np.where(dataset_joints == 'relb')[1][0]
        rwri = np.where(dataset_joints == 'rwri')[1][0]
        rkne = np.where(dataset_joints == 'rkne')[1][0]
        rank = np.where(dataset_joints == 'rank')[1][0]
        rhip = np.where(dataset_joints == 'rhip')[1][0]

        jnt_visible = 1 - jnt_missing
        uv_error = pos_pred_src - pos_gt_src
        uv_err = np.linalg.norm(uv_error, axis=1)
        # headsizes = headboxes_src[1, :, :] - headboxes_src[0, :, :]
        # headsizes = np.linalg.norm(headsizes, axis=0)
        # headsizes *= SC_BIAS
        # scale = np.multiply(headsizes, np.ones((len(uv_err), 1)))
        scale = gt_dict['scale']
        print(scale.shape)

        scaled_uv_err = np.divide(uv_err, scale)
        scaled_uv_err = np.multiply(scaled_uv_err, jnt_visible)
        jnt_count = np.sum(jnt_visible, axis=1)
        less_than_threshold = np.multiply((scaled_uv_err <= threshold),
                                          jnt_visible)
        PCKh = np.divide(100.*np.sum(less_than_threshold, axis=1), jnt_count)

        # save
        rng = np.arange(0, 0.5+0.01, 0.01)
        pckAll = np.zeros((len(rng), 16))

        for r in range(len(rng)):
            threshold = rng[r]
            less_than_threshold = np.multiply(scaled_uv_err <= threshold,
                                              jnt_visible)
            pckAll[r, :] = np.divide(100.*np.sum(less_than_threshold, axis=1),
                                     jnt_count)

        PCKh = np.ma.array(PCKh, mask=False)
        PCKh.mask[6:8] = True

        jnt_count = np.ma.array(jnt_count, mask=False)
        jnt_count.mask[6:8] = True
        jnt_ratio = jnt_count / np.sum(jnt_count).astype(float)

        name_value = [
            ('Head', PCKh[head]),
            ('Shoulder', 0.5 * (PCKh[lsho] + PCKh[rsho])),
            ('Elbow', 0.5 * (PCKh[lelb] + PCKh[relb])),
            ('Wrist', 0.5 * (PCKh[lwri] + PCKh[rwri])),
            ('Hip', 0.5 * (PCKh[lhip] + PCKh[rhip])),
            ('Knee', 0.5 * (PCKh[lkne] + PCKh[rkne])),
            ('Ankle', 0.5 * (PCKh[lank] + PCKh[rank])),
            ('Mean', np.sum(PCKh * jnt_ratio)),
            ('[email protected]', np.sum(pckAll[11, :] * jnt_ratio))
        ]
        name_value = OrderedDict(name_value)

        return name_value, name_value['Mean']