File size: 11,567 Bytes
5209465 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import csv
import os
import shutil
from PIL import Image
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision
import cv2
import numpy as np
import sys
sys.path.append("../lib")
import time
# import _init_paths
import models
from config import cfg
from config import update_config
from core.inference import get_final_preds
from utils.transforms import get_affine_transform
CTX = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
COCO_KEYPOINT_INDEXES = {
0: 'nose',
1: 'left_eye',
2: 'right_eye',
3: 'left_ear',
4: 'right_ear',
5: 'left_shoulder',
6: 'right_shoulder',
7: 'left_elbow',
8: 'right_elbow',
9: 'left_wrist',
10: 'right_wrist',
11: 'left_hip',
12: 'right_hip',
13: 'left_knee',
14: 'right_knee',
15: 'left_ankle',
16: 'right_ankle'
}
COCO_INSTANCE_CATEGORY_NAMES = [
'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
]
def get_person_detection_boxes(model, img, threshold=0.5):
pil_image = Image.fromarray(img) # Load the image
transform = transforms.Compose([transforms.ToTensor()]) # Defing PyTorch Transform
transformed_img = transform(pil_image) # Apply the transform to the image
pred = model([transformed_img.to(CTX)]) # Pass the image to the model
# Use the first detected person
pred_classes = [COCO_INSTANCE_CATEGORY_NAMES[i]
for i in list(pred[0]['labels'].cpu().numpy())] # Get the Prediction Score
pred_boxes = [[(i[0], i[1]), (i[2], i[3])]
for i in list(pred[0]['boxes'].cpu().detach().numpy())] # Bounding boxes
pred_scores = list(pred[0]['scores'].cpu().detach().numpy())
person_boxes = []
# Select box has score larger than threshold and is person
for pred_class, pred_box, pred_score in zip(pred_classes, pred_boxes, pred_scores):
if (pred_score > threshold) and (pred_class == 'person'):
person_boxes.append(pred_box)
return person_boxes
def get_pose_estimation_prediction(pose_model, image, centers, scales, transform):
rotation = 0
# pose estimation transformation
model_inputs = []
for center, scale in zip(centers, scales):
trans = get_affine_transform(center, scale, rotation, cfg.MODEL.IMAGE_SIZE)
# Crop smaller image of people
model_input = cv2.warpAffine(
image,
trans,
(int(cfg.MODEL.IMAGE_SIZE[0]), int(cfg.MODEL.IMAGE_SIZE[1])),
flags=cv2.INTER_LINEAR)
# hwc -> 1chw
model_input = transform(model_input)#.unsqueeze(0)
model_inputs.append(model_input)
# n * 1chw -> nchw
model_inputs = torch.stack(model_inputs)
# compute output heatmap
output = pose_model(model_inputs.to(CTX))
coords, _ = get_final_preds(
cfg,
output.cpu().detach().numpy(),
np.asarray(centers),
np.asarray(scales))
return coords
def box_to_center_scale(box, model_image_width, model_image_height):
"""convert a box to center,scale information required for pose transformation
Parameters
----------
box : list of tuple
list of length 2 with two tuples of floats representing
bottom left and top right corner of a box
model_image_width : int
model_image_height : int
Returns
-------
(numpy array, numpy array)
Two numpy arrays, coordinates for the center of the box and the scale of the box
"""
center = np.zeros((2), dtype=np.float32)
bottom_left_corner = box[0]
top_right_corner = box[1]
box_width = top_right_corner[0]-bottom_left_corner[0]
box_height = top_right_corner[1]-bottom_left_corner[1]
bottom_left_x = bottom_left_corner[0]
bottom_left_y = bottom_left_corner[1]
center[0] = bottom_left_x + box_width * 0.5
center[1] = bottom_left_y + box_height * 0.5
aspect_ratio = model_image_width * 1.0 / model_image_height
pixel_std = 200
if box_width > aspect_ratio * box_height:
box_height = box_width * 1.0 / aspect_ratio
elif box_width < aspect_ratio * box_height:
box_width = box_height * aspect_ratio
scale = np.array(
[box_width * 1.0 / pixel_std, box_height * 1.0 / pixel_std],
dtype=np.float32)
if center[0] != -1:
scale = scale * 1.25
return center, scale
def prepare_output_dirs(prefix='/output/'):
pose_dir = os.path.join(prefix, "pose")
if os.path.exists(pose_dir) and os.path.isdir(pose_dir):
shutil.rmtree(pose_dir)
os.makedirs(pose_dir, exist_ok=True)
return pose_dir
def parse_args():
parser = argparse.ArgumentParser(description='Train keypoints network')
# general
parser.add_argument('--cfg', type=str, required=True)
parser.add_argument('--videoFile', type=str, required=True)
parser.add_argument('--outputDir', type=str, default='/output/')
parser.add_argument('--inferenceFps', type=int, default=10)
parser.add_argument('--writeBoxFrames', action='store_true')
parser.add_argument('opts',
help='Modify config options using the command-line',
default=None,
nargs=argparse.REMAINDER)
args = parser.parse_args()
# args expected by supporting codebase
args.modelDir = ''
args.logDir = ''
args.dataDir = ''
args.prevModelDir = ''
return args
def main():
# transformation
pose_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
# cudnn related setting
cudnn.benchmark = cfg.CUDNN.BENCHMARK
torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC
torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED
args = parse_args()
update_config(cfg, args)
pose_dir = prepare_output_dirs(args.outputDir)
csv_output_rows = []
box_model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
box_model.to(CTX)
box_model.eval()
pose_model = eval('models.'+cfg.MODEL.NAME+'.get_pose_net')(
cfg, is_train=False
)
if cfg.TEST.MODEL_FILE:
print('=> loading model from {}'.format(cfg.TEST.MODEL_FILE))
pose_model.load_state_dict(torch.load(cfg.TEST.MODEL_FILE), strict=False)
else:
print('expected model defined in config at TEST.MODEL_FILE')
pose_model.to(CTX)
pose_model.eval()
# Loading an video
vidcap = cv2.VideoCapture(args.videoFile)
fps = vidcap.get(cv2.CAP_PROP_FPS)
if fps < args.inferenceFps:
print('desired inference fps is '+str(args.inferenceFps)+' but video fps is '+str(fps))
exit()
skip_frame_cnt = round(fps / args.inferenceFps)
frame_width = int(vidcap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(vidcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
outcap = cv2.VideoWriter('{}/{}_pose.avi'.format(args.outputDir, os.path.splitext(os.path.basename(args.videoFile))[0]),
cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), int(skip_frame_cnt), (frame_width, frame_height))
count = 0
while vidcap.isOpened():
total_now = time.time()
ret, image_bgr = vidcap.read()
count += 1
if not ret:
continue
if count % skip_frame_cnt != 0:
continue
image_rgb = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB)
# Clone 2 image for person detection and pose estimation
if cfg.DATASET.COLOR_RGB:
image_per = image_rgb.copy()
image_pose = image_rgb.copy()
else:
image_per = image_bgr.copy()
image_pose = image_bgr.copy()
# Clone 1 image for debugging purpose
image_debug = image_bgr.copy()
# object detection box
now = time.time()
pred_boxes = get_person_detection_boxes(box_model, image_per, threshold=0.9)
then = time.time()
print("Find person bbox in: {} sec".format(then - now))
# Can not find people. Move to next frame
if not pred_boxes:
count += 1
continue
if args.writeBoxFrames:
for box in pred_boxes:
cv2.rectangle(image_debug, box[0], box[1], color=(0, 255, 0),
thickness=3) # Draw Rectangle with the coordinates
# pose estimation : for multiple people
centers = []
scales = []
for box in pred_boxes:
center, scale = box_to_center_scale(box, cfg.MODEL.IMAGE_SIZE[0], cfg.MODEL.IMAGE_SIZE[1])
centers.append(center)
scales.append(scale)
now = time.time()
pose_preds = get_pose_estimation_prediction(pose_model, image_pose, centers, scales, transform=pose_transform)
then = time.time()
print("Find person pose in: {} sec".format(then - now))
new_csv_row = []
for coords in pose_preds:
# Draw each point on image
for coord in coords:
x_coord, y_coord = int(coord[0]), int(coord[1])
cv2.circle(image_debug, (x_coord, y_coord), 4, (255, 0, 0), 2)
new_csv_row.extend([x_coord, y_coord])
total_then = time.time()
text = "{:03.2f} sec".format(total_then - total_now)
cv2.putText(image_debug, text, (100, 50), cv2.FONT_HERSHEY_SIMPLEX,
1, (0, 0, 255), 2, cv2.LINE_AA)
cv2.imshow("pos", image_debug)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
csv_output_rows.append(new_csv_row)
img_file = os.path.join(pose_dir, 'pose_{:08d}.jpg'.format(count))
cv2.imwrite(img_file, image_debug)
outcap.write(image_debug)
# write csv
csv_headers = ['frame']
for keypoint in COCO_KEYPOINT_INDEXES.values():
csv_headers.extend([keypoint+'_x', keypoint+'_y'])
csv_output_filename = os.path.join(args.outputDir, 'pose-data.csv')
with open(csv_output_filename, 'w', newline='') as csvfile:
csvwriter = csv.writer(csvfile)
csvwriter.writerow(csv_headers)
csvwriter.writerows(csv_output_rows)
vidcap.release()
outcap.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
main()
|