|
import streamlit as st
|
|
import numpy as np
|
|
import time
|
|
|
|
import tensorflow as tf
|
|
from utils import load_prepare_image, model_pred, fetch_recipe
|
|
|
|
import sys
|
|
sys.path.insert(1, 'Api Data')
|
|
from RecipeData import fetchRecipeData
|
|
|
|
IMG_SIZE = (224, 224)
|
|
model_V1 = 'models/Seefood_model_v1.tflite'
|
|
model_V2 = 'models/Seefood_model_V2.tflite'
|
|
|
|
@st.cache()
|
|
def model_prediction(model, img_file, rescale):
|
|
img = load_prepare_image(img_file, IMG_SIZE, rescale=rescale)
|
|
prediction = model_pred(model, img)
|
|
sorceCode, recipe_data = fetchRecipeData(prediction)
|
|
return prediction, sorceCode, recipe_data
|
|
|
|
|
|
def main():
|
|
st.set_page_config(
|
|
page_title="SeeFood",
|
|
page_icon="🍔",
|
|
layout="wide",
|
|
initial_sidebar_state="expanded"
|
|
)
|
|
|
|
st.title('SeeFood🍔')
|
|
st.write('Upload a food image and get the recipe for that food and other details of that food')
|
|
|
|
col1, col2 = st.columns(2)
|
|
|
|
with col1:
|
|
|
|
uploaded_file = st.file_uploader("Choose a file")
|
|
selected_model = st.selectbox('Select Model',('model 1', 'model 2'), index=1)
|
|
if uploaded_file is not None:
|
|
uploaded_img = uploaded_file.read()
|
|
|
|
col2.image(uploaded_file, width=500)
|
|
|
|
|
|
predict = st.button('Get Recipe!')
|
|
|
|
if predict:
|
|
if uploaded_file is not None:
|
|
with st.spinner('Please Wait 👩🍳'):
|
|
|
|
|
|
if selected_model == 'model 2':
|
|
pred_model = model_V2
|
|
pred_rescale = True
|
|
else:
|
|
pred_model = model_V1
|
|
pred_rescale = False
|
|
|
|
|
|
food, source_code, recipe_data = model_prediction(pred_model, uploaded_img, pred_rescale)
|
|
|
|
|
|
percent_Protein = recipe_data['percentProtein']
|
|
percent_fat = recipe_data['percentFat']
|
|
percent_carbs = recipe_data['percentCarbs']
|
|
|
|
|
|
col1.success(f"It's an {food}")
|
|
|
|
if source_code == 200:
|
|
|
|
st.header(recipe_data['title']+" Recipe")
|
|
|
|
col3, col4 = st.columns(2)
|
|
|
|
with col3:
|
|
|
|
st.subheader('Ingredients')
|
|
|
|
for i in recipe_data['ingridents']:
|
|
st.info(f"{i}")
|
|
|
|
with col4:
|
|
st.subheader('Instructions')
|
|
st.info(recipe_data['instructions'])
|
|
|
|
'''
|
|
## Caloric Breakdown
|
|
'''
|
|
st.success(f'''
|
|
* Protien: {percent_Protein}%
|
|
* Fat: {percent_fat}%
|
|
* Carbohydrates: {percent_carbs}%
|
|
''')
|
|
|
|
|
|
else:
|
|
st.error('Something went wrong please try again :(')
|
|
|
|
|
|
else:
|
|
st.warning('Please Upload Image')
|
|
|
|
|
|
|
|
|
|
if __name__=='__main__':
|
|
main() |