Vrk commited on
Commit
11641bb
·
1 Parent(s): 61dc254
Files changed (1) hide show
  1. app.py +110 -0
app.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ import time
4
+
5
+ import tensorflow as tf
6
+ from utils import load_prepare_image, model_pred, fetch_recipe
7
+
8
+ import sys
9
+ sys.path.insert(1, 'Api Data')
10
+ from RecipeData import fetchRecipeData
11
+
12
+ IMG_SIZE = (224, 224)
13
+ model_V1 = 'models/Seefood_model_v1.tflite'
14
+ model_V2 = 'models/Seefood_model_V2.tflite'
15
+
16
+ @st.cache()
17
+ def model_prediction(model, img_file, rescale):
18
+ img = load_prepare_image(img_file, IMG_SIZE, rescale=rescale)
19
+ prediction = model_pred(model, img)
20
+ sorceCode, recipe_data = fetchRecipeData(prediction)
21
+ return prediction, sorceCode, recipe_data
22
+
23
+
24
+ def main():
25
+ st.set_page_config(
26
+ page_title="SeeFood",
27
+ page_icon="🍔",
28
+ layout="wide",
29
+ initial_sidebar_state="expanded"
30
+ )
31
+
32
+ st.title('SeeFood🍔')
33
+ st.write('Upload a food image and get the recipe for that food and other details of that food')
34
+
35
+ col1, col2 = st.columns(2)
36
+
37
+ with col1:
38
+ # image uploading button
39
+ uploaded_file = st.file_uploader("Choose a file")
40
+ selected_model = st.selectbox('Select Model',('model 1', 'model 2'), index=1)
41
+ if uploaded_file is not None:
42
+ uploaded_img = uploaded_file.read()
43
+
44
+ col2.image(uploaded_file, width=500)
45
+
46
+ # butoon to make predictions
47
+ predict = st.button('Get Recipe!')
48
+
49
+ if predict:
50
+ if uploaded_file is not None:
51
+ with st.spinner('Please Wait 👩‍🍳'):
52
+
53
+ # setting model and rescalling
54
+ if selected_model == 'model 2':
55
+ pred_model = model_V2
56
+ pred_rescale = True
57
+ else:
58
+ pred_model = model_V1
59
+ pred_rescale = False
60
+
61
+ # makeing prediction and fetching food recipe form api
62
+ food, source_code, recipe_data = model_prediction(pred_model, uploaded_img, pred_rescale)
63
+
64
+ # asssigning caleoric breakdown data
65
+ percent_Protein = recipe_data['percentProtein']
66
+ percent_fat = recipe_data['percentFat']
67
+ percent_carbs = recipe_data['percentCarbs']
68
+
69
+ # food name message
70
+ col1.success(f"It's an {food}")
71
+
72
+ if source_code == 200:
73
+ # desplay food recipe
74
+ st.header(recipe_data['title']+" Recipe")
75
+
76
+ col3, col4 = st.columns(2)
77
+
78
+ with col3:
79
+ # Ingridents of recipie
80
+ st.subheader('Ingredients')
81
+ # st.info(recipe_data['ingridents'])
82
+ for i in recipe_data['ingridents']:
83
+ st.info(f"{i}")
84
+ # Inctuction for recipe
85
+ with col4:
86
+ st.subheader('Instructions')
87
+ st.info(recipe_data['instructions'])
88
+ # st.subheader('Caloric Breakdown')
89
+ '''
90
+ ## Caloric Breakdown
91
+ '''
92
+ st.success(f'''
93
+ * Protien: {percent_Protein}%
94
+ * Fat: {percent_fat}%
95
+ * Carbohydrates: {percent_carbs}%
96
+ ''')
97
+
98
+
99
+ else:
100
+ st.error('Something went wrong please try again :(')
101
+
102
+
103
+ else:
104
+ st.warning('Please Upload Image')
105
+
106
+
107
+
108
+
109
+ if __name__=='__main__':
110
+ main()