Spaces:
Runtime error
Runtime error
import os | |
import sys | |
import time | |
import torch | |
import librosa | |
import logging | |
import traceback | |
import numpy as np | |
import soundfile as sf | |
import noisereduce as nr | |
from scipy.io import wavfile | |
from audio_upscaler import upscale | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
from rvc.infer.pipeline import Pipeline as VC | |
from rvc.lib.utils import load_audio, load_embedding | |
from rvc.lib.tools.split_audio import process_audio, merge_audio | |
from rvc.lib.algorithm.synthesizers import Synthesizer | |
from rvc.configs.config import Config | |
logging.getLogger("httpx").setLevel(logging.WARNING) | |
logging.getLogger("httpcore").setLevel(logging.WARNING) | |
logging.getLogger("faiss").setLevel(logging.WARNING) | |
class VoiceConverter: | |
""" | |
A class for performing voice conversion using the Retrieval-Based Voice Conversion (RVC) method. | |
""" | |
def __init__(self): | |
""" | |
Initializes the VoiceConverter with default configuration, and sets up models and parameters. | |
""" | |
self.config = Config() # Load RVC configuration | |
self.hubert_model = ( | |
None # Initialize the Hubert model (for embedding extraction) | |
) | |
self.tgt_sr = None # Target sampling rate for the output audio | |
self.net_g = None # Generator network for voice conversion | |
self.vc = None # Voice conversion pipeline instance | |
self.cpt = None # Checkpoint for loading model weights | |
self.version = None # Model version | |
self.n_spk = None # Number of speakers in the model | |
self.use_f0 = None # Whether the model uses F0 | |
def load_hubert(self, embedder_model: str, embedder_model_custom: str = None): | |
""" | |
Loads the HuBERT model for speaker embedding extraction. | |
Args: | |
embedder_model (str): Path to the pre-trained HuBERT model. | |
embedder_model_custom (str): Path to the custom HuBERT model. | |
""" | |
models, _, _ = load_embedding(embedder_model, embedder_model_custom) | |
self.hubert_model = models[0].to(self.config.device) | |
self.hubert_model = ( | |
self.hubert_model.half() | |
if self.config.is_half | |
else self.hubert_model.float() | |
) | |
self.hubert_model.eval() | |
def remove_audio_noise(input_audio_path, reduction_strength=0.7): | |
""" | |
Removes noise from an audio file using the NoiseReduce library. | |
Args: | |
input_audio_path (str): Path to the input audio file. | |
reduction_strength (float): Strength of the noise reduction. Default is 0.7. | |
""" | |
try: | |
rate, data = wavfile.read(input_audio_path) | |
reduced_noise = nr.reduce_noise( | |
y=data, sr=rate, prop_decrease=reduction_strength | |
) | |
return reduced_noise | |
except Exception as error: | |
print(f"An error occurred removing audio noise: {error}") | |
return None | |
def convert_audio_format(input_path, output_path, output_format): | |
""" | |
Converts an audio file to a specified output format. | |
Args: | |
input_path (str): Path to the input audio file. | |
output_path (str): Path to the output audio file. | |
output_format (str): Desired audio format (e.g., "WAV", "MP3"). | |
""" | |
try: | |
if output_format != "WAV": | |
print(f"Converting audio to {output_format} format...") | |
audio, sample_rate = librosa.load(input_path, sr=None) | |
common_sample_rates = [ | |
8000, | |
11025, | |
12000, | |
16000, | |
22050, | |
24000, | |
32000, | |
44100, | |
48000, | |
] | |
target_sr = min(common_sample_rates, key=lambda x: abs(x - sample_rate)) | |
audio = librosa.resample( | |
audio, orig_sr=sample_rate, target_sr=target_sr | |
) | |
sf.write(output_path, audio, target_sr, format=output_format.lower()) | |
return output_path | |
except Exception as error: | |
print(f"An error occurred converting the audio format: {error}") | |
def convert_audio( | |
self, | |
audio_input_path: str, | |
audio_output_path: str, | |
model_path: str, | |
index_path: str, | |
embedder_model: str, | |
pitch: int, | |
f0_file: str, | |
f0_method: str, | |
index_rate: float, | |
volume_envelope: int, | |
protect: float, | |
hop_length: int, | |
split_audio: bool, | |
f0_autotune: bool, | |
filter_radius: int, | |
embedder_model_custom: str, | |
clean_audio: bool, | |
clean_strength: float, | |
export_format: str, | |
upscale_audio: bool, | |
resample_sr: int = 0, | |
sid: int = 0, | |
): | |
""" | |
Performs voice conversion on the input audio. | |
Args: | |
audio_input_path (str): Path to the input audio file. | |
audio_output_path (str): Path to the output audio file. | |
model_path (str): Path to the voice conversion model. | |
index_path (str): Path to the index file. | |
sid (int, optional): Speaker ID. Default is 0. | |
pitch (str, optional): Key for F0 up-sampling. Default is None. | |
f0_file (str, optional): Path to the F0 file. Default is None. | |
f0_method (str, optional): Method for F0 extraction. Default is None. | |
index_rate (float, optional): Rate for index matching. Default is None. | |
resample_sr (int, optional): Resample sampling rate. Default is 0. | |
volume_envelope (float, optional): RMS mix rate. Default is None. | |
protect (float, optional): Protection rate for certain audio segments. Default is None. | |
hop_length (int, optional): Hop length for audio processing. Default is None. | |
split_audio (bool, optional): Whether to split the audio for processing. Default is False. | |
f0_autotune (bool, optional): Whether to use F0 autotune. Default is False. | |
filter_radius (int, optional): Radius for filtering. Default is None. | |
embedder_model (str, optional): Path to the embedder model. Default is None. | |
embedder_model_custom (str, optional): Path to the custom embedder model. Default is None. | |
clean_audio (bool, optional): Whether to clean the audio. Default is False. | |
clean_strength (float, optional): Strength of the audio cleaning. Default is 0.7. | |
export_format (str, optional): Format for exporting the audio. Default is "WAV". | |
upscale_audio (bool, optional): Whether to upscale the audio. Default is False. | |
""" | |
self.get_vc(model_path, sid) | |
try: | |
start_time = time.time() | |
print(f"Converting audio '{audio_input_path}'...") | |
if upscale_audio == True: | |
upscale(audio_input_path, audio_input_path) | |
audio = load_audio(audio_input_path, 16000) | |
audio_max = np.abs(audio).max() / 0.95 | |
if audio_max > 1: | |
audio /= audio_max | |
if not self.hubert_model: | |
self.load_hubert(embedder_model, embedder_model_custom) | |
file_index = ( | |
index_path.strip() | |
.strip('"') | |
.strip("\n") | |
.strip('"') | |
.strip() | |
.replace("trained", "added") | |
) | |
if self.tgt_sr != resample_sr >= 16000: | |
self.tgt_sr = resample_sr | |
if split_audio: | |
result, new_dir_path = process_audio(audio_input_path) | |
if result == "Error": | |
return "Error with Split Audio", None | |
dir_path = ( | |
new_dir_path.strip().strip('"').strip("\n").strip('"').strip() | |
) | |
if dir_path: | |
paths = [ | |
os.path.join(root, name) | |
for root, _, files in os.walk(dir_path, topdown=False) | |
for name in files | |
if name.endswith(".wav") and root == dir_path | |
] | |
try: | |
for path in paths: | |
self.convert_audio( | |
audio_input_path=path, | |
audio_output_path=path, | |
model_path=model_path, | |
index_path=index_path, | |
sid=sid, | |
pitch=pitch, | |
f0_file=None, | |
f0_method=f0_method, | |
index_rate=index_rate, | |
resample_sr=resample_sr, | |
volume_envelope=volume_envelope, | |
protect=protect, | |
hop_length=hop_length, | |
split_audio=False, | |
f0_autotune=f0_autotune, | |
filter_radius=filter_radius, | |
export_format=export_format, | |
upscale_audio=upscale_audio, | |
embedder_model=embedder_model, | |
embedder_model_custom=embedder_model_custom, | |
clean_audio=clean_audio, | |
clean_strength=clean_strength, | |
) | |
except Exception as error: | |
print(f"An error occurred processing the segmented audio: {error}") | |
print(traceback.format_exc()) | |
return f"Error {error}" | |
print("Finished processing segmented audio, now merging audio...") | |
merge_timestamps_file = os.path.join( | |
os.path.dirname(new_dir_path), | |
f"{os.path.basename(audio_input_path).split('.')[0]}_timestamps.txt", | |
) | |
self.tgt_sr, audio_opt = merge_audio(merge_timestamps_file) | |
os.remove(merge_timestamps_file) | |
else: | |
audio_opt = self.vc.pipeline( | |
model=self.hubert_model, | |
net_g=self.net_g, | |
sid=sid, | |
audio=audio, | |
input_audio_path=audio_input_path, | |
pitch=pitch, | |
f0_method=f0_method, | |
file_index=file_index, | |
index_rate=index_rate, | |
pitch_guidance=self.use_f0, | |
filter_radius=filter_radius, | |
tgt_sr=self.tgt_sr, | |
resample_sr=resample_sr, | |
volume_envelope=volume_envelope, | |
version=self.version, | |
protect=protect, | |
hop_length=hop_length, | |
f0_autotune=f0_autotune, | |
f0_file=f0_file, | |
) | |
if audio_output_path: | |
sf.write(audio_output_path, audio_opt, self.tgt_sr, format="WAV") | |
if clean_audio: | |
cleaned_audio = self.remove_audio_noise( | |
audio_output_path, clean_strength | |
) | |
if cleaned_audio is not None: | |
sf.write( | |
audio_output_path, cleaned_audio, self.tgt_sr, format="WAV" | |
) | |
output_path_format = audio_output_path.replace( | |
".wav", f".{export_format.lower()}" | |
) | |
audio_output_path = self.convert_audio_format( | |
audio_output_path, output_path_format, export_format | |
) | |
elapsed_time = time.time() - start_time | |
print( | |
f"Conversion completed at '{audio_output_path}' in {elapsed_time:.2f} seconds." | |
) | |
except Exception as error: | |
print(f"An error occurred during audio conversion: {error}") | |
print(traceback.format_exc()) | |
def get_vc(self, weight_root, sid): | |
""" | |
Loads the voice conversion model and sets up the pipeline. | |
Args: | |
weight_root (str): Path to the model weights. | |
sid (int): Speaker ID. | |
""" | |
if sid == "" or sid == []: | |
self.cleanup_model() | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
self.load_model(weight_root) | |
if self.cpt is not None: | |
self.setup_network() | |
self.setup_vc_instance() | |
def cleanup_model(self): | |
""" | |
Cleans up the model and releases resources. | |
""" | |
if self.hubert_model is not None: | |
del self.net_g, self.n_spk, self.vc, self.hubert_model, self.tgt_sr | |
self.hubert_model = self.net_g = self.n_spk = self.vc = self.tgt_sr = None | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
del self.net_g, self.cpt | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
self.cpt = None | |
def load_model(self, weight_root): | |
""" | |
Loads the model weights from the specified path. | |
Args: | |
weight_root (str): Path to the model weights. | |
""" | |
self.cpt = ( | |
torch.load(weight_root, map_location="cpu") | |
if os.path.isfile(weight_root) | |
else None | |
) | |
def setup_network(self): | |
""" | |
Sets up the network configuration based on the loaded checkpoint. | |
""" | |
if self.cpt is not None: | |
self.tgt_sr = self.cpt["config"][-1] | |
self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0] | |
self.use_f0 = self.cpt.get("f0", 1) | |
self.version = self.cpt.get("version", "v1") | |
self.text_enc_hidden_dim = 768 if self.version == "v2" else 256 | |
self.net_g = Synthesizer( | |
*self.cpt["config"], | |
use_f0=self.use_f0, | |
text_enc_hidden_dim=self.text_enc_hidden_dim, | |
is_half=self.config.is_half, | |
) | |
del self.net_g.enc_q | |
self.net_g.load_state_dict(self.cpt["weight"], strict=False) | |
self.net_g.eval().to(self.config.device) | |
self.net_g = ( | |
self.net_g.half() if self.config.is_half else self.net_g.float() | |
) | |
def setup_vc_instance(self): | |
""" | |
Sets up the voice conversion pipeline instance based on the target sampling rate and configuration. | |
""" | |
if self.cpt is not None: | |
self.vc = VC(self.tgt_sr, self.config) | |
self.n_spk = self.cpt["config"][-3] | |