File size: 14,901 Bytes
4efe6b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import os
import sys
import time
import torch
import librosa
import logging
import traceback
import numpy as np
import soundfile as sf
import noisereduce as nr

from scipy.io import wavfile
from audio_upscaler import upscale

now_dir = os.getcwd()
sys.path.append(now_dir)

from rvc.infer.pipeline import Pipeline as VC
from rvc.lib.utils import load_audio, load_embedding
from rvc.lib.tools.split_audio import process_audio, merge_audio
from rvc.lib.algorithm.synthesizers import Synthesizer
from rvc.configs.config import Config

logging.getLogger("httpx").setLevel(logging.WARNING)
logging.getLogger("httpcore").setLevel(logging.WARNING)
logging.getLogger("faiss").setLevel(logging.WARNING)


class VoiceConverter:
    """
    A class for performing voice conversion using the Retrieval-Based Voice Conversion (RVC) method.
    """

    def __init__(self):
        """
        Initializes the VoiceConverter with default configuration, and sets up models and parameters.
        """
        self.config = Config()  # Load RVC configuration
        self.hubert_model = (
            None  # Initialize the Hubert model (for embedding extraction)
        )
        self.tgt_sr = None  # Target sampling rate for the output audio
        self.net_g = None  # Generator network for voice conversion
        self.vc = None  # Voice conversion pipeline instance
        self.cpt = None  # Checkpoint for loading model weights
        self.version = None  # Model version
        self.n_spk = None  # Number of speakers in the model
        self.use_f0 = None  # Whether the model uses F0

    def load_hubert(self, embedder_model: str, embedder_model_custom: str = None):
        """
        Loads the HuBERT model for speaker embedding extraction.

        Args:
            embedder_model (str): Path to the pre-trained HuBERT model.
            embedder_model_custom (str): Path to the custom HuBERT model.
        """
        models, _, _ = load_embedding(embedder_model, embedder_model_custom)
        self.hubert_model = models[0].to(self.config.device)
        self.hubert_model = (
            self.hubert_model.half()
            if self.config.is_half
            else self.hubert_model.float()
        )
        self.hubert_model.eval()

    @staticmethod
    def remove_audio_noise(input_audio_path, reduction_strength=0.7):
        """
        Removes noise from an audio file using the NoiseReduce library.

        Args:
            input_audio_path (str): Path to the input audio file.
            reduction_strength (float): Strength of the noise reduction. Default is 0.7.
        """
        try:
            rate, data = wavfile.read(input_audio_path)
            reduced_noise = nr.reduce_noise(
                y=data, sr=rate, prop_decrease=reduction_strength
            )
            return reduced_noise
        except Exception as error:
            print(f"An error occurred removing audio noise: {error}")
            return None

    @staticmethod
    def convert_audio_format(input_path, output_path, output_format):
        """
        Converts an audio file to a specified output format.

        Args:
            input_path (str): Path to the input audio file.
            output_path (str): Path to the output audio file.
            output_format (str): Desired audio format (e.g., "WAV", "MP3").
        """
        try:
            if output_format != "WAV":
                print(f"Converting audio to {output_format} format...")
                audio, sample_rate = librosa.load(input_path, sr=None)
                common_sample_rates = [
                    8000,
                    11025,
                    12000,
                    16000,
                    22050,
                    24000,
                    32000,
                    44100,
                    48000,
                ]
                target_sr = min(common_sample_rates, key=lambda x: abs(x - sample_rate))
                audio = librosa.resample(
                    audio, orig_sr=sample_rate, target_sr=target_sr
                )
                sf.write(output_path, audio, target_sr, format=output_format.lower())
            return output_path
        except Exception as error:
            print(f"An error occurred converting the audio format: {error}")

    def convert_audio(
        self,
        audio_input_path: str,
        audio_output_path: str,
        model_path: str,
        index_path: str,
        embedder_model: str,
        pitch: int,
        f0_file: str,
        f0_method: str,
        index_rate: float,
        volume_envelope: int,
        protect: float,
        hop_length: int,
        split_audio: bool,
        f0_autotune: bool,
        filter_radius: int,
        embedder_model_custom: str,
        clean_audio: bool,
        clean_strength: float,
        export_format: str,
        upscale_audio: bool,
        resample_sr: int = 0,
        sid: int = 0,
    ):
        """
        Performs voice conversion on the input audio.

        Args:
            audio_input_path (str): Path to the input audio file.
            audio_output_path (str): Path to the output audio file.
            model_path (str): Path to the voice conversion model.
            index_path (str): Path to the index file.
            sid (int, optional): Speaker ID. Default is 0.
            pitch (str, optional): Key for F0 up-sampling. Default is None.
            f0_file (str, optional): Path to the F0 file. Default is None.
            f0_method (str, optional): Method for F0 extraction. Default is None.
            index_rate (float, optional): Rate for index matching. Default is None.
            resample_sr (int, optional): Resample sampling rate. Default is 0.
            volume_envelope (float, optional): RMS mix rate. Default is None.
            protect (float, optional): Protection rate for certain audio segments. Default is None.
            hop_length (int, optional): Hop length for audio processing. Default is None.
            split_audio (bool, optional): Whether to split the audio for processing. Default is False.
            f0_autotune (bool, optional): Whether to use F0 autotune. Default is False.
            filter_radius (int, optional): Radius for filtering. Default is None.
            embedder_model (str, optional): Path to the embedder model. Default is None.
            embedder_model_custom (str, optional): Path to the custom embedder model. Default is None.
            clean_audio (bool, optional): Whether to clean the audio. Default is False.
            clean_strength (float, optional): Strength of the audio cleaning. Default is 0.7.
            export_format (str, optional): Format for exporting the audio. Default is "WAV".
            upscale_audio (bool, optional): Whether to upscale the audio. Default is False.

        """
        self.get_vc(model_path, sid)

        try:
            start_time = time.time()
            print(f"Converting audio '{audio_input_path}'...")

            if upscale_audio == True:
                upscale(audio_input_path, audio_input_path)

            audio = load_audio(audio_input_path, 16000)
            audio_max = np.abs(audio).max() / 0.95

            if audio_max > 1:
                audio /= audio_max

            if not self.hubert_model:
                self.load_hubert(embedder_model, embedder_model_custom)

            file_index = (
                index_path.strip()
                .strip('"')
                .strip("\n")
                .strip('"')
                .strip()
                .replace("trained", "added")
            )

            if self.tgt_sr != resample_sr >= 16000:
                self.tgt_sr = resample_sr

            if split_audio:
                result, new_dir_path = process_audio(audio_input_path)
                if result == "Error":
                    return "Error with Split Audio", None

                dir_path = (
                    new_dir_path.strip().strip('"').strip("\n").strip('"').strip()
                )
                if dir_path:
                    paths = [
                        os.path.join(root, name)
                        for root, _, files in os.walk(dir_path, topdown=False)
                        for name in files
                        if name.endswith(".wav") and root == dir_path
                    ]
                try:
                    for path in paths:
                        self.convert_audio(
                            audio_input_path=path,
                            audio_output_path=path,
                            model_path=model_path,
                            index_path=index_path,
                            sid=sid,
                            pitch=pitch,
                            f0_file=None,
                            f0_method=f0_method,
                            index_rate=index_rate,
                            resample_sr=resample_sr,
                            volume_envelope=volume_envelope,
                            protect=protect,
                            hop_length=hop_length,
                            split_audio=False,
                            f0_autotune=f0_autotune,
                            filter_radius=filter_radius,
                            export_format=export_format,
                            upscale_audio=upscale_audio,
                            embedder_model=embedder_model,
                            embedder_model_custom=embedder_model_custom,
                            clean_audio=clean_audio,
                            clean_strength=clean_strength,
                        )
                except Exception as error:
                    print(f"An error occurred processing the segmented audio: {error}")
                    print(traceback.format_exc())
                    return f"Error {error}"
                print("Finished processing segmented audio, now merging audio...")
                merge_timestamps_file = os.path.join(
                    os.path.dirname(new_dir_path),
                    f"{os.path.basename(audio_input_path).split('.')[0]}_timestamps.txt",
                )
                self.tgt_sr, audio_opt = merge_audio(merge_timestamps_file)
                os.remove(merge_timestamps_file)
            else:
                audio_opt = self.vc.pipeline(
                    model=self.hubert_model,
                    net_g=self.net_g,
                    sid=sid,
                    audio=audio,
                    input_audio_path=audio_input_path,
                    pitch=pitch,
                    f0_method=f0_method,
                    file_index=file_index,
                    index_rate=index_rate,
                    pitch_guidance=self.use_f0,
                    filter_radius=filter_radius,
                    tgt_sr=self.tgt_sr,
                    resample_sr=resample_sr,
                    volume_envelope=volume_envelope,
                    version=self.version,
                    protect=protect,
                    hop_length=hop_length,
                    f0_autotune=f0_autotune,
                    f0_file=f0_file,
                )

            if audio_output_path:
                sf.write(audio_output_path, audio_opt, self.tgt_sr, format="WAV")

            if clean_audio:
                cleaned_audio = self.remove_audio_noise(
                    audio_output_path, clean_strength
                )
                if cleaned_audio is not None:
                    sf.write(
                        audio_output_path, cleaned_audio, self.tgt_sr, format="WAV"
                    )

            output_path_format = audio_output_path.replace(
                ".wav", f".{export_format.lower()}"
            )
            audio_output_path = self.convert_audio_format(
                audio_output_path, output_path_format, export_format
            )

            elapsed_time = time.time() - start_time
            print(
                f"Conversion completed at '{audio_output_path}' in {elapsed_time:.2f} seconds."
            )

        except Exception as error:
            print(f"An error occurred during audio conversion: {error}")
            print(traceback.format_exc())

    def get_vc(self, weight_root, sid):
        """
        Loads the voice conversion model and sets up the pipeline.

        Args:
            weight_root (str): Path to the model weights.
            sid (int): Speaker ID.
        """
        if sid == "" or sid == []:
            self.cleanup_model()
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

        self.load_model(weight_root)

        if self.cpt is not None:
            self.setup_network()
            self.setup_vc_instance()

    def cleanup_model(self):
        """
        Cleans up the model and releases resources.
        """
        if self.hubert_model is not None:
            del self.net_g, self.n_spk, self.vc, self.hubert_model, self.tgt_sr
            self.hubert_model = self.net_g = self.n_spk = self.vc = self.tgt_sr = None
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

        del self.net_g, self.cpt
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        self.cpt = None

    def load_model(self, weight_root):
        """
        Loads the model weights from the specified path.

        Args:
            weight_root (str): Path to the model weights.
        """
        self.cpt = (
            torch.load(weight_root, map_location="cpu")
            if os.path.isfile(weight_root)
            else None
        )

    def setup_network(self):
        """
        Sets up the network configuration based on the loaded checkpoint.
        """
        if self.cpt is not None:
            self.tgt_sr = self.cpt["config"][-1]
            self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0]
            self.use_f0 = self.cpt.get("f0", 1)

            self.version = self.cpt.get("version", "v1")
            self.text_enc_hidden_dim = 768 if self.version == "v2" else 256
            self.net_g = Synthesizer(
                *self.cpt["config"],
                use_f0=self.use_f0,
                text_enc_hidden_dim=self.text_enc_hidden_dim,
                is_half=self.config.is_half,
            )
            del self.net_g.enc_q
            self.net_g.load_state_dict(self.cpt["weight"], strict=False)
            self.net_g.eval().to(self.config.device)
            self.net_g = (
                self.net_g.half() if self.config.is_half else self.net_g.float()
            )

    def setup_vc_instance(self):
        """
        Sets up the voice conversion pipeline instance based on the target sampling rate and configuration.
        """
        if self.cpt is not None:
            self.vc = VC(self.tgt_sr, self.config)
            self.n_spk = self.cpt["config"][-3]