File size: 5,682 Bytes
c3f0353
1b92067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3f0353
1b92067
c3f0353
1b92067
 
c3f0353
1b92067
b2dcfc6
 
 
1b92067
 
 
 
c3f0353
1b92067
b2dcfc6
 
c3f0353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b92067
c3f0353
1b92067
b2dcfc6
c3f0353
 
 
 
 
 
1b92067
c3f0353
1b92067
 
 
c3f0353
 
 
1b92067
 
 
 
 
 
 
 
 
 
 
c3f0353
 
 
 
 
 
 
 
1b92067
 
 
f41a5ce
 
 
1b92067
c3f0353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

import evaluate
import datasets
import numpy as np

from vendi_score import vendi, image_utils, text_utils

# TODO: Add BibTeX citation
_CITATION = ""
_DESCRIPTION = """\
The Vendi Score is a metric for evaluating diversity in machine learning.
The input to metric is a collection of samples and a pairwise similarity function, and the output is a number, which can be interpreted as the effective number of unique elements in the sample.
See the project's README at https://github.com/vertaix/Vendi-Score for more information.
"""


_KWARGS_DESCRIPTION = """
Calculates the Vendi Score given samples and a similarity function.
Args:
   samples: an iterable containing n samples to score, an n x n similarity
       matrix K, or an n x d feature matrix X.
   k: a pairwise similarity function, or a string identifying a predefined 
       similarity function.
       Options: ngram_overlap, text_embeddings, pixels, image_embeddings.
   score_K: if true, samples is an n x n similarity matrix K.
   score_X: if true, samples is an n x d feature matrix X.
   score_dual: if true, compute diversity score of X @ X.T.
   normalize: if true, normalize the similarity scores.
   model (optional): if k is "text_embeddings", a model mapping sentences to
       embeddings (output should be an object with an attribute called
       `pooler_output` or `last_hidden_state`). If k is "image_embeddings", a
       model mapping images to embeddings.
   tokenizer (optional): if k is "text_embeddings" or "ngram_overlap", a
       tokenizer mapping strings to lists.
   transform (optional): if k is "image_embeddings", a torchvision transform
       to apply to the samples.
   model_path (optional): if k is "text_embeddings", the name of a model on the
       HuggingFace hub.
   ns (optional): if k is "ngram_overlap", the values of n to calculate.
   batch_size (optional): batch size to use if k is "text_embedding" or
       "image_embedding".
   device (optional): a string (e.g. "cuda", "cpu") or torch.device identifying
       the device to use if k is "text_embedding or "image_embedding".
Returns:
    VS: The Vendi Score. 
Examples:
    >>> vendi_score = evaluate.load("danf0/vendiscore")
    >>> samples = ["Look, Jane.",
                   "See Spot.",
                   "See Spot run.",
                   "Run, Spot, run.",
	           "Jane sees Spot run."]
    >>> results = vendi_score.compute(samples, k="ngram_overlap", ns=[1, 2])
    >>> print(results)
    {'VS': 3.90657...}
"""


@evaluate.utils.file_utils.add_start_docstrings(
    _DESCRIPTION, _KWARGS_DESCRIPTION
)
class VendiScore(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            features=datasets.Features(
                {
                    "samples": datasets.Value("string"),
                }
            ),
            homepage="http://github.com/Vertaix/Vendi-Score",
            codebase_urls=["http://github.com/Vertaix/Vendi-Score"],
            reference_urls=[],
        )

    def _download_and_prepare(self, dl_manager):
        import nltk

        nltk.download("punkt")

    def _compute(
        self,
        samples,
        k="ngram_overlap",
        score_K=False,
        score_X=False,
        score_dual=False,
        normalize=False,
        model=None,
        tokenizer=None,
        transform=None,
        model_path=None,
        ns=[1, 2],
        batch_size=16,
        device="cpu",
    ):
        if score_K:
            vs = vendi.score_K(samples, normalize=normalize)
        elif score_dual:
            vs = vendi.score_dual(samples, normalize=normalize)
        elif score_X:
            vs = vendi.score_X(samples, normalize=normalize)
        elif type(k) == str and k == "ngram_overlap":
            vs = text_utils.ngram_vendi_score(
                samples, ns=ns, tokenizer=tokenizer
            )
        elif type(k) == str and k == "text_embeddings":
            vs = text_utils.embedding_vendi_score(
                samples,
                model=model,
                tokenizer=tokenizer,
                batch_size=batch_size,
                device=device,
                model_path=model_path,
            )
        elif type(k) == str and k == "pixels":
            vs = image_utils.pixel_vendi_score(samples)
        elif type(k) == str and k == "image_embeddings":
            vs = image_utils.embedding_vendi_score(
                samples,
                batch_size=batch_size,
                device=device,
                model=model,
                transform=transform,
            )
        else:
            vs = vendi.score(samples, k)
        return {"VS": vs}