Spaces:
Build error
Build error
Update vendiscore.
Browse files- requirements.txt +11 -1
- vendiscore.py +98 -47
requirements.txt
CHANGED
@@ -1 +1,11 @@
|
|
1 |
-
git+https://github.com/huggingface/evaluate@main
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/evaluate@main
|
2 |
+
numpy>=1.13
|
3 |
+
scipy>=1.3.2
|
4 |
+
scikit-learn>=1.1
|
5 |
+
torch
|
6 |
+
torchvision
|
7 |
+
matplotlib
|
8 |
+
transformers
|
9 |
+
datasets
|
10 |
+
nltk
|
11 |
+
vendi_score
|
vendiscore.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# Copyright
|
2 |
#
|
3 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
# you may not use this file except in compliance with the License.
|
@@ -15,49 +15,62 @@
|
|
15 |
|
16 |
import evaluate
|
17 |
import datasets
|
|
|
18 |
|
|
|
19 |
|
20 |
# TODO: Add BibTeX citation
|
21 |
-
_CITATION = ""
|
22 |
-
@InProceedings{huggingface:module,
|
23 |
-
title = {A great new module},
|
24 |
-
authors={huggingface, Inc.},
|
25 |
-
year={2020}
|
26 |
-
}
|
27 |
-
"""
|
28 |
-
|
29 |
-
# TODO: Add description of the module here
|
30 |
_DESCRIPTION = """\
|
31 |
-
|
32 |
"""
|
33 |
|
34 |
|
35 |
-
# TODO: Add description of the arguments of the module here
|
36 |
_KWARGS_DESCRIPTION = """
|
37 |
-
Calculates
|
38 |
Args:
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
Returns:
|
44 |
-
|
45 |
-
another_score: description of the second score,
|
46 |
Examples:
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
52 |
>>> print(results)
|
53 |
-
{'
|
54 |
"""
|
55 |
|
56 |
-
# TODO: Define external resources urls if needed
|
57 |
-
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
58 |
-
|
59 |
|
60 |
-
@evaluate.utils.file_utils.add_start_docstrings(
|
|
|
|
|
61 |
class VendiScore(evaluate.Metric):
|
62 |
"""TODO: Short description of my evaluation module."""
|
63 |
|
@@ -69,27 +82,65 @@ class VendiScore(evaluate.Metric):
|
|
69 |
description=_DESCRIPTION,
|
70 |
citation=_CITATION,
|
71 |
inputs_description=_KWARGS_DESCRIPTION,
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
81 |
-
reference_urls=["http://path.to.reference.url/new_module"]
|
82 |
)
|
83 |
|
84 |
def _download_and_prepare(self, dl_manager):
|
85 |
"""Optional: download external resources useful to compute the scores"""
|
86 |
-
# TODO: Download external resources if needed
|
87 |
pass
|
88 |
|
89 |
-
def _compute(
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
#
|
3 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
# you may not use this file except in compliance with the License.
|
|
|
15 |
|
16 |
import evaluate
|
17 |
import datasets
|
18 |
+
import numpy as np
|
19 |
|
20 |
+
from vendi_score import vendi, image_utils, text_utils
|
21 |
|
22 |
# TODO: Add BibTeX citation
|
23 |
+
_CITATION = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
_DESCRIPTION = """\
|
25 |
+
A diversity evaluation metric for machine learning.
|
26 |
"""
|
27 |
|
28 |
|
|
|
29 |
_KWARGS_DESCRIPTION = """
|
30 |
+
Calculates the Vendi Score given samples and a similarity function.
|
31 |
Args:
|
32 |
+
samples: list of n sentences to score, an n x n similarity matrix K, or
|
33 |
+
an n x d feature matrix X.
|
34 |
+
k: a pairwise similarity function, or a string identifying a predefined
|
35 |
+
similarity function.
|
36 |
+
Options: ngram_overlap, text_embeddings, pixels, image_embeddings.
|
37 |
+
score_K: if true, samples is an n x n similarity matrix K.
|
38 |
+
score_X: if true, samples is an n x d feature matrix X.
|
39 |
+
score_dual: if true, compute diversity score of X @ X.T.
|
40 |
+
normalize: if true, normalize the similarity scores.
|
41 |
+
model (optional): if k is "text_embeddings", a model mapping sentences to
|
42 |
+
embeddings (output should be an object with an attribute called
|
43 |
+
`pooler_output` or `last_hidden_state`). If k is "image_embeddings", a
|
44 |
+
model mapping images to embeddings.
|
45 |
+
tokenizer (optional): if k is "text_embeddings" or "ngram_overlap", a
|
46 |
+
tokenizer mapping strings to lists.
|
47 |
+
transform (optional): if k is "image_embeddings", a torchvision transform
|
48 |
+
to apply to the samples.
|
49 |
+
model_path (optional): if k is "text_embeddings", the name of a model on the
|
50 |
+
HuggingFace hub.
|
51 |
+
ns (optional): if k is "ngram_overlap", the values of n to calculate.
|
52 |
+
batch_size (optional): batch size to use if k is "text_embedding" or
|
53 |
+
"image_embedding".
|
54 |
+
device (optional): a string (e.g. "cuda", "cpu") or torch.device identifying
|
55 |
+
the device to use if k is "text_embedding or "image_embedding".
|
56 |
Returns:
|
57 |
+
VS: The Vendi Score.
|
|
|
58 |
Examples:
|
59 |
+
>>> vendi_score = evaluate.load("vendi_score")
|
60 |
+
>>> samples = ["Look, Jane.",
|
61 |
+
"See Spot.",
|
62 |
+
"See Spot run.",
|
63 |
+
"Run, Spot, run.",
|
64 |
+
"Jane sees Spot run."]
|
65 |
+
>>> results = vendi_score.compute(samples, k="ngram_overlap", ns=[1, 2])
|
66 |
>>> print(results)
|
67 |
+
{'VS': 3.90657...}
|
68 |
"""
|
69 |
|
|
|
|
|
|
|
70 |
|
71 |
+
@evaluate.utils.file_utils.add_start_docstrings(
|
72 |
+
_DESCRIPTION, _KWARGS_DESCRIPTION
|
73 |
+
)
|
74 |
class VendiScore(evaluate.Metric):
|
75 |
"""TODO: Short description of my evaluation module."""
|
76 |
|
|
|
82 |
description=_DESCRIPTION,
|
83 |
citation=_CITATION,
|
84 |
inputs_description=_KWARGS_DESCRIPTION,
|
85 |
+
features=datasets.Features(
|
86 |
+
{
|
87 |
+
"samples": datasets.Value("string"),
|
88 |
+
}
|
89 |
+
),
|
90 |
+
homepage="http://github.com/Vertaix/Vendi-Score",
|
91 |
+
codebase_urls=["http://github.com/Vertaix/Vendi-Score"],
|
92 |
+
reference_urls=[],
|
|
|
|
|
93 |
)
|
94 |
|
95 |
def _download_and_prepare(self, dl_manager):
|
96 |
"""Optional: download external resources useful to compute the scores"""
|
|
|
97 |
pass
|
98 |
|
99 |
+
def _compute(
|
100 |
+
self,
|
101 |
+
samples,
|
102 |
+
k="ngram_overlap",
|
103 |
+
score_K=False,
|
104 |
+
score_X=False,
|
105 |
+
score_dual=False,
|
106 |
+
normalize=False,
|
107 |
+
model=None,
|
108 |
+
tokenizer=None,
|
109 |
+
transform=None,
|
110 |
+
model_path=None,
|
111 |
+
ns=[1, 2],
|
112 |
+
batch_size=16,
|
113 |
+
device="cpu",
|
114 |
+
):
|
115 |
+
if score_K:
|
116 |
+
vs = vendi.score_K(samples, normalize=normalize)
|
117 |
+
elif score_dual:
|
118 |
+
vs = vendi.score_dual(samples, normalize=normalize)
|
119 |
+
elif score_X:
|
120 |
+
vs = vendi.score_X(samples, normalize=normalize)
|
121 |
+
elif type(k) == str and k == "ngram_overlap":
|
122 |
+
vs = text_utils.ngram_vendi_score(
|
123 |
+
samples, ns=ns, tokenizer=tokenizer
|
124 |
+
)
|
125 |
+
elif type(k) == str and k == "text_embeddings":
|
126 |
+
vs = text_utils.embedding_vendi_score(
|
127 |
+
samples,
|
128 |
+
model=model,
|
129 |
+
tokenizer=tokenizer,
|
130 |
+
batch_size=batch_size,
|
131 |
+
device=device,
|
132 |
+
model_path=model_path,
|
133 |
+
)
|
134 |
+
elif type(k) == str and k == "pixels":
|
135 |
+
vs = image_utils.pixel_vendi_score(samples)
|
136 |
+
elif type(k) == str and k == "image_embeddings":
|
137 |
+
vs = image_utils.embedding_vendi_score(
|
138 |
+
samples,
|
139 |
+
batch_size=batch_size,
|
140 |
+
device=device,
|
141 |
+
model=model,
|
142 |
+
transform=transform,
|
143 |
+
)
|
144 |
+
else:
|
145 |
+
vs = vendi.score(samples, k)
|
146 |
+
return {"VS": vs}
|