Spaces:
Build error
Build error
File size: 6,853 Bytes
c3f0353 1b92067 c3f0353 1b92067 c3f0353 1b92067 c3f0353 1b92067 b2dcfc6 2554b00 1b92067 c3f0353 1b92067 b2dcfc6 c3f0353 1b92067 c3f0353 1b92067 01c0635 c3f0353 01c0635 1b92067 c3f0353 1b92067 175acee b430aee 175acee b430aee 9495639 175acee 9495639 175acee 41e5c28 607b435 40df7c3 41e5c28 c3f0353 1b92067 41e5c28 c3f0353 1b92067 f41a5ce 1b92067 c3f0353 a53b506 c3f0353 a53b506 c3f0353 a53b506 c3f0353 a53b506 c3f0353 a53b506 c3f0353 a53b506 c3f0353 a53b506 c3f0353 a53b506 c3f0353 a53b506 c3f0353 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import evaluate
import datasets
import numpy as np
from vendi_score import vendi, image_utils, text_utils
# TODO: Add BibTeX citation
_CITATION = ""
_DESCRIPTION = """\
The Vendi Score is a metric for evaluating diversity in machine learning.
The input to metric is a collection of samples and a pairwise similarity function, and the output is a number, which can be interpreted as the effective number of unique elements in the sample.
See the project's README at https://github.com/vertaix/Vendi-Score for more information.
The interactive example calculates the Vendi Score for a set of strings using the n-gram overlap similarity, averaged between n=1 and n=2.
"""
_KWARGS_DESCRIPTION = """
Calculates the Vendi Score given samples and a similarity function.
Args:
samples: an iterable containing n samples to score, an n x n similarity
matrix K, or an n x d feature matrix X.
k: a pairwise similarity function, or a string identifying a predefined
similarity function.
Options: ngram_overlap, text_embeddings, pixels, image_embeddings.
score_K: if true, samples is an n x n similarity matrix K.
score_X: if true, samples is an n x d feature matrix X.
score_dual: if true, compute diversity score of X @ X.T.
normalize: if true, normalize the similarity scores.
model (optional): if k is "text_embeddings", a model mapping sentences to
embeddings (output should be an object with an attribute called
`pooler_output` or `last_hidden_state`). If k is "image_embeddings", a
model mapping images to embeddings.
tokenizer (optional): if k is "text_embeddings" or "ngram_overlap", a
tokenizer mapping strings to lists.
transform (optional): if k is "image_embeddings", a torchvision transform
to apply to the samples.
model_path (optional): if k is "text_embeddings", the name of a model on the
HuggingFace hub.
ns (optional): if k is "ngram_overlap", the values of n to calculate.
batch_size (optional): batch size to use if k is "text_embedding" or
"image_embedding".
device (optional): a string (e.g. "cuda", "cpu") or torch.device identifying
the device to use if k is "text_embedding or "image_embedding".
Returns:
VS: The Vendi Score.
Examples:
>>> vendiscore = evaluate.load("danf0/vendiscore")
>>> samples = ["Look, Jane.",
"See Spot.",
"See Spot run.",
"Run, Spot, run.",
"Jane sees Spot run."]
>>> results = vendiscore.compute(samples, k="ngram_overlap", ns=[1, 2])
>>> print(results)
{'VS': 3.90657...}
"""
def get_dtype(config_name):
if config_name == "text":
return datasets.Features({"samples": datasets.Value("string")})
if config_name == "image":
return datasets.Features({"samples": datasets.Image})
elif config_name in ("X", "K"):
return datasets.Array2D
elif config_name == "default":
return datasets.Value("string")
else:
return datasets.Value(config_name)
def get_features(config_name):
if config_name in ("text", "default"):
return datasets.Features({"samples": datasets.Value("string")})
if config_name == "image":
return datasets.Features({"samples": datasets.Image})
if config_name in ("K", "X"):
return [
datasets.Features(
{"samples": datasets.Sequence(datasets.Value("int32"))}
),
datasets.Features(
{"samples": datasets.Sequence(datasets.Value("float"))}
),
]
return [
datasets.Features({"samples": datasets.Value("int32")}),
datasets.Features({"samples": datasets.Value("float")}),
datasets.Features({"samples": datasets.Array2D}),
]
@evaluate.utils.file_utils.add_start_docstrings(
_DESCRIPTION, _KWARGS_DESCRIPTION
)
class VendiScore(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=get_features(self.config_name),
homepage="http://github.com/Vertaix/Vendi-Score",
codebase_urls=["http://github.com/Vertaix/Vendi-Score"],
reference_urls=[],
)
def _download_and_prepare(self, dl_manager):
import nltk
nltk.download("punkt")
def _compute(
self,
samples,
k="ngram_overlap",
score_K=False,
score_X=False,
score_dual=False,
normalize=False,
model=None,
tokenizer=None,
transform=None,
model_path=None,
ns=[1, 2],
batch_size=16,
device="cpu",
):
if score_K:
vs = vendi.score_K(samples, normalize=normalize)
elif score_dual:
vs = vendi.score_dual(samples, normalize=normalize)
elif score_X:
vs = vendi.score_X(samples, normalize=normalize)
elif type(k) == str and k == "ngram_overlap":
vs = text_utils.ngram_vendi_score(
samples, ns=ns, tokenizer=tokenizer
)
elif type(k) == str and k == "text_embeddings":
vs = text_utils.embedding_vendi_score(
samples,
model=model,
tokenizer=tokenizer,
batch_size=batch_size,
device=device,
model_path=model_path,
)
elif type(k) == str and k == "pixels":
vs = image_utils.pixel_vendi_score(samples)
elif type(k) == str and k == "image_embeddings":
vs = image_utils.embedding_vendi_score(
samples,
batch_size=batch_size,
device=device,
model=model,
transform=transform,
)
else:
vs = vendi.score(samples, k)
return {"VS": vs}
|