VanguardAI's picture
Update app.py
2a200be verified
raw
history blame
8.13 kB
import gradio as gr
import torch
import os
import numpy as np
from groq import Groq
from transformers import AutoModel, AutoTokenizer
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
from parler_tts import ParlerTTSForConditionalGeneration
import soundfile as sf
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQA
from PIL import Image
from decord import VideoReader, cpu
from tavily import TavilyClient
import requests
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
# Initialize models
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
text_model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True,
device_map="auto", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True)
tts_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-large-v1")
tts_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-large-v1")
# Corrected image model and pipeline setup
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_4step_unet.safetensors"
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
image_pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
image_pipe.scheduler = EulerDiscreteScheduler.from_config(image_pipe.scheduler.config, timestep_spacing="trailing")
# Tavily Client
tavily_client = TavilyClient(api_key="tvly-YOUR_API_KEY")
# Voice output function
def play_voice_output(response):
description = "Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise."
input_ids = tts_tokenizer(description, return_tensors="pt").input_ids.to('cuda')
prompt_input_ids = tts_tokenizer(response, return_tensors="pt").input_ids.to('cuda')
generation = tts_model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
audio_arr = generation.cpu().numpy().squeeze()
sf.write("output.wav", audio_arr, tts_model.config.sampling_rate)
return "output.wav"
# NumPy Calculation function
def numpy_calculate(code: str) -> str:
try:
local_dict = {}
exec(code, {"np": np}, local_dict)
result = local_dict.get("result", "No result found")
return str(result)
except Exception as e:
return f"An error occurred: {str(e)}"
# Function to use Langchain for RAG
def use_langchain_rag(file_name, file_content, query):
# Split the document into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.create_documents([file_content])
# Create embeddings and store in the vector database
embeddings = OpenAIEmbeddings()
db = Chroma.from_documents(docs, embeddings, persist_directory=".chroma_db") # Use a persistent directory
# Create a question-answering chain
qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=db.as_retriever())
# Get the answer
return qa.run(query)
# Function to encode video
def encode_video(video_path):
MAX_NUM_FRAMES = 64
vr = VideoReader(video_path, ctx=cpu(0))
sample_fps = round(vr.get_avg_fps() / 1)
frame_idx = [i for i in range(0, len(vr), sample_fps)]
if len(frame_idx) > MAX_NUM_FRAMES:
frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES)
frames = vr.get_batch(frame_idx).asnumpy()
frames = [Image.fromarray(v.astype('uint8')) for v in frames]
return frames
# Web search function
def web_search(query):
answer = tavily_client.qna_search(query=query)
return answer
# Function to handle different input types
def handle_input(user_prompt, image=None, video=None, audio=None, doc=None, websearch=False):
# Voice input handling
if audio:
transcription = client.audio.transcriptions.create(
file=(audio.name, audio.read()),
model="whisper-large-v3"
)
user_prompt = transcription.text
# If user uploaded an image and text, use MiniCPM model
if image:
image = Image.open(image).convert('RGB')
messages = [{"role": "user", "content": [image, user_prompt]}]
response = text_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
return response
# Determine which tool to use
if doc:
file_content = doc.read().decode('utf-8')
response = use_langchain_rag(doc.name, file_content, user_prompt)
elif "calculate" in user_prompt.lower():
response = numpy_calculate(user_prompt)
elif "generate" in user_prompt.lower() and ("image" in user_prompt.lower() or "picture" in user_prompt.lower()):
response = image_pipe(prompt=user_prompt, num_inference_steps=20, guidance_scale=7.5)
elif websearch:
response = web_search(user_prompt)
else:
chat_completion = client.chat.completions.create(
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": user_prompt}
],
model=MODEL,
)
response = chat_completion.choices[0].message.content
return response
@spaces.GPU()
def main_interface(user_prompt, image=None, video=None, audio=None, doc=None, voice_only=False, websearch=False):
text_model.to(device='cuda', dtype=torch.bfloat16)
tts_model.to("cuda")
unet.to("cuda", torch.float16)
image_pipe.to("cuda")
response = handle_input(user_prompt, image=image, video=video, audio=audio, doc=doc, websearch=websearch)
if voice_only:
audio_file = play_voice_output(response)
return response, audio_file # Return both text and audio outputs
else:
return response, None # Return only the text output, no audio
# Gradio UI Setup
def create_ui():
with gr.Blocks() as demo:
gr.Markdown("# AI Assistant")
with gr.Row():
with gr.Column(scale=2):
user_prompt = gr.Textbox(placeholder="Type your message here...", lines=1)
with gr.Column(scale=1):
image_input = gr.Image(type="filepath", label="Upload an image", elem_id="image-icon")
video_input = gr.Video(label="Upload a video", elem_id="video-icon")
audio_input = gr.Audio(type="filepath", label="Upload audio", elem_id="mic-icon")
doc_input = gr.File(type="filepath", label="Upload a document", elem_id="document-icon")
voice_only_mode = gr.Checkbox(label="Enable Voice Only Mode", elem_id="voice-only-mode")
websearch_mode = gr.Checkbox(label="Enable Web Search", elem_id="websearch-mode")
with gr.Column(scale=1):
submit = gr.Button("Submit")
output_label = gr.Label(label="Output")
audio_output = gr.Audio(label="Audio Output", visible=False)
submit.click(
fn=main_interface,
inputs=[user_prompt, image_input, video_input, audio_input, doc_input, voice_only_mode, websearch_mode],
outputs=[output_label, audio_output] # Expecting a string and audio file
)
# Voice-only mode UI
voice_only_mode.change(
lambda x: gr.update(visible=not x),
inputs=voice_only_mode,
outputs=[user_prompt, image_input, video_input, doc_input, websearch_mode, submit]
)
voice_only_mode.change(
lambda x: gr.update(visible=x),
inputs=voice_only_mode,
outputs=[audio_input]
)
return demo
# Launch the app
demo = create_ui()
demo.launch(inline=False)