Spaces:
Running
on
Zero
Running
on
Zero
VanguardAI
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import torch
|
|
3 |
import os
|
4 |
import numpy as np
|
5 |
from groq import Groq
|
6 |
-
import spaces
|
7 |
from transformers import AutoModel, AutoTokenizer
|
8 |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
9 |
from parler_tts import ParlerTTSForConditionalGeneration
|
@@ -12,13 +11,14 @@ from langchain_community.embeddings import OpenAIEmbeddings
|
|
12 |
from langchain_community.vectorstores import Chroma
|
13 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
14 |
from langchain.chains import RetrievalQA
|
15 |
-
from langchain_community.llms import OpenAI
|
16 |
from PIL import Image
|
17 |
from decord import VideoReader, cpu
|
|
|
18 |
import requests
|
19 |
from huggingface_hub import hf_hub_download
|
20 |
from safetensors.torch import load_file
|
21 |
|
|
|
22 |
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
23 |
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
|
24 |
|
@@ -39,7 +39,10 @@ unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
|
|
39 |
image_pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
40 |
image_pipe.scheduler = EulerDiscreteScheduler.from_config(image_pipe.scheduler.config, timestep_spacing="trailing")
|
41 |
|
42 |
-
#
|
|
|
|
|
|
|
43 |
def play_voice_output(response):
|
44 |
description = "Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise."
|
45 |
input_ids = tts_tokenizer(description, return_tensors="pt").input_ids.to('cuda')
|
@@ -49,18 +52,6 @@ def play_voice_output(response):
|
|
49 |
sf.write("output.wav", audio_arr, tts_model.config.sampling_rate)
|
50 |
return "output.wav"
|
51 |
|
52 |
-
# Web search function
|
53 |
-
def web_search(query):
|
54 |
-
api_key = os.environ.get("BING_API_KEY")
|
55 |
-
search_url = "https://api.bing.microsoft.com/v7.0/search"
|
56 |
-
headers = {"Ocp-Apim-Subscription-Key": api_key}
|
57 |
-
params = {"q": query, "textDecorations": True, "textFormat": "HTML"}
|
58 |
-
response = requests.get(search_url, headers=headers, params=params)
|
59 |
-
response.raise_for_status()
|
60 |
-
search_results = response.json()
|
61 |
-
snippets = [result['snippet'] for result in search_results.get('webPages', {}).get('value', [])]
|
62 |
-
return "\n".join(snippets)
|
63 |
-
|
64 |
# NumPy Calculation function
|
65 |
def numpy_calculate(code: str) -> str:
|
66 |
try:
|
@@ -71,37 +62,6 @@ def numpy_calculate(code: str) -> str:
|
|
71 |
except Exception as e:
|
72 |
return f"An error occurred: {str(e)}"
|
73 |
|
74 |
-
# Function to handle different input types
|
75 |
-
def handle_input(user_prompt, image=None, video=None, audio=None, doc=None):
|
76 |
-
messages = [{"role": "user", "content": user_prompt}]
|
77 |
-
|
78 |
-
if audio:
|
79 |
-
transcription = client.audio.transcriptions.create(
|
80 |
-
file=(audio.name, audio.read()),
|
81 |
-
model="whisper-large-v3"
|
82 |
-
)
|
83 |
-
user_prompt = transcription.text
|
84 |
-
|
85 |
-
if doc:
|
86 |
-
# RAG with Langchain
|
87 |
-
response = use_langchain_rag(doc.name, doc.read(), user_prompt)
|
88 |
-
elif image and not video:
|
89 |
-
image = Image.open(image).convert('RGB')
|
90 |
-
messages[0]['content'] = [image, user_prompt]
|
91 |
-
response = text_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
|
92 |
-
elif video:
|
93 |
-
frames = encode_video(video.name)
|
94 |
-
messages[0]['content'] = frames + [user_prompt]
|
95 |
-
response = text_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
|
96 |
-
else:
|
97 |
-
response = client.chat.completions.create(
|
98 |
-
model=MODEL,
|
99 |
-
messages=messages,
|
100 |
-
tools=initialize_tools()
|
101 |
-
).choices[0].message.content
|
102 |
-
|
103 |
-
return response
|
104 |
-
|
105 |
# Function to use Langchain for RAG
|
106 |
def use_langchain_rag(file_name, file_content, query):
|
107 |
# Split the document into chunks
|
@@ -130,64 +90,58 @@ def encode_video(video_path):
|
|
130 |
frames = [Image.fromarray(v.astype('uint8')) for v in frames]
|
131 |
return frames
|
132 |
|
133 |
-
#
|
134 |
-
def
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
"
|
169 |
-
"
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
},
|
177 |
-
"implementation": numpy_calculate
|
178 |
-
}
|
179 |
-
}
|
180 |
-
]
|
181 |
-
return tools
|
182 |
|
183 |
@spaces.GPU()
|
184 |
-
def main_interface(user_prompt, image=None, video=None, audio=None, doc=None, voice_only=False):
|
185 |
text_model.to(device='cuda', dtype=torch.bfloat16)
|
186 |
tts_model.to("cuda")
|
187 |
unet.to("cuda", torch.float16)
|
188 |
image_pipe.to("cuda")
|
189 |
|
190 |
-
response = handle_input(user_prompt, image=image, video=video, audio=audio, doc=doc)
|
191 |
|
192 |
if voice_only:
|
193 |
audio_file = play_voice_output(response)
|
@@ -195,22 +149,46 @@ def main_interface(user_prompt, image=None, video=None, audio=None, doc=None, vo
|
|
195 |
else:
|
196 |
return response, None # Return only the text output, no audio
|
197 |
|
198 |
-
# Gradio
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
|
|
|
|
216 |
demo.launch(inline=False)
|
|
|
3 |
import os
|
4 |
import numpy as np
|
5 |
from groq import Groq
|
|
|
6 |
from transformers import AutoModel, AutoTokenizer
|
7 |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
8 |
from parler_tts import ParlerTTSForConditionalGeneration
|
|
|
11 |
from langchain_community.vectorstores import Chroma
|
12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
from langchain.chains import RetrievalQA
|
|
|
14 |
from PIL import Image
|
15 |
from decord import VideoReader, cpu
|
16 |
+
from tavily import TavilyClient
|
17 |
import requests
|
18 |
from huggingface_hub import hf_hub_download
|
19 |
from safetensors.torch import load_file
|
20 |
|
21 |
+
# Initialize models
|
22 |
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
23 |
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
|
24 |
|
|
|
39 |
image_pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
|
40 |
image_pipe.scheduler = EulerDiscreteScheduler.from_config(image_pipe.scheduler.config, timestep_spacing="trailing")
|
41 |
|
42 |
+
# Tavily Client
|
43 |
+
tavily_client = TavilyClient(api_key="tvly-YOUR_API_KEY")
|
44 |
+
|
45 |
+
# Voice output function
|
46 |
def play_voice_output(response):
|
47 |
description = "Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise."
|
48 |
input_ids = tts_tokenizer(description, return_tensors="pt").input_ids.to('cuda')
|
|
|
52 |
sf.write("output.wav", audio_arr, tts_model.config.sampling_rate)
|
53 |
return "output.wav"
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
# NumPy Calculation function
|
56 |
def numpy_calculate(code: str) -> str:
|
57 |
try:
|
|
|
62 |
except Exception as e:
|
63 |
return f"An error occurred: {str(e)}"
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
# Function to use Langchain for RAG
|
66 |
def use_langchain_rag(file_name, file_content, query):
|
67 |
# Split the document into chunks
|
|
|
90 |
frames = [Image.fromarray(v.astype('uint8')) for v in frames]
|
91 |
return frames
|
92 |
|
93 |
+
# Web search function
|
94 |
+
def web_search(query):
|
95 |
+
answer = tavily_client.qna_search(query=query)
|
96 |
+
return answer
|
97 |
+
|
98 |
+
# Function to handle different input types
|
99 |
+
def handle_input(user_prompt, image=None, video=None, audio=None, doc=None, websearch=False):
|
100 |
+
# Voice input handling
|
101 |
+
if audio:
|
102 |
+
transcription = client.audio.transcriptions.create(
|
103 |
+
file=(audio.name, audio.read()),
|
104 |
+
model="whisper-large-v3"
|
105 |
+
)
|
106 |
+
user_prompt = transcription.text
|
107 |
+
|
108 |
+
# If user uploaded an image and text, use MiniCPM model
|
109 |
+
if image:
|
110 |
+
image = Image.open(image).convert('RGB')
|
111 |
+
messages = [{"role": "user", "content": [image, user_prompt]}]
|
112 |
+
response = text_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
|
113 |
+
return response
|
114 |
+
|
115 |
+
# Determine which tool to use
|
116 |
+
if doc:
|
117 |
+
file_content = doc.read().decode('utf-8')
|
118 |
+
response = use_langchain_rag(doc.name, file_content, user_prompt)
|
119 |
+
elif "calculate" in user_prompt.lower():
|
120 |
+
response = numpy_calculate(user_prompt)
|
121 |
+
elif "generate" in user_prompt.lower() and ("image" in user_prompt.lower() or "picture" in user_prompt.lower()):
|
122 |
+
response = image_pipe(prompt=user_prompt, num_inference_steps=20, guidance_scale=7.5)
|
123 |
+
elif websearch:
|
124 |
+
response = web_search(user_prompt)
|
125 |
+
else:
|
126 |
+
chat_completion = client.chat.completions.create(
|
127 |
+
messages=[
|
128 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
129 |
+
{"role": "user", "content": user_prompt}
|
130 |
+
],
|
131 |
+
model=MODEL,
|
132 |
+
)
|
133 |
+
response = chat_completion.choices[0].message.content
|
134 |
+
|
135 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
@spaces.GPU()
|
138 |
+
def main_interface(user_prompt, image=None, video=None, audio=None, doc=None, voice_only=False, websearch=False):
|
139 |
text_model.to(device='cuda', dtype=torch.bfloat16)
|
140 |
tts_model.to("cuda")
|
141 |
unet.to("cuda", torch.float16)
|
142 |
image_pipe.to("cuda")
|
143 |
|
144 |
+
response = handle_input(user_prompt, image=image, video=video, audio=audio, doc=doc, websearch=websearch)
|
145 |
|
146 |
if voice_only:
|
147 |
audio_file = play_voice_output(response)
|
|
|
149 |
else:
|
150 |
return response, None # Return only the text output, no audio
|
151 |
|
152 |
+
# Gradio UI Setup
|
153 |
+
def create_ui():
|
154 |
+
with gr.Blocks() as demo:
|
155 |
+
gr.Markdown("# AI Assistant")
|
156 |
+
with gr.Row():
|
157 |
+
with gr.Column(scale=2):
|
158 |
+
user_prompt = gr.Textbox(placeholder="Type your message here...", lines=1)
|
159 |
+
with gr.Column(scale=1):
|
160 |
+
image_input = gr.Image(type="filepath", label="Upload an image", elem_id="image-icon")
|
161 |
+
video_input = gr.Video(label="Upload a video", elem_id="video-icon")
|
162 |
+
audio_input = gr.Audio(type="filepath", label="Upload audio", elem_id="mic-icon")
|
163 |
+
doc_input = gr.File(type="filepath", label="Upload a document", elem_id="document-icon")
|
164 |
+
voice_only_mode = gr.Checkbox(label="Enable Voice Only Mode", elem_id="voice-only-mode")
|
165 |
+
websearch_mode = gr.Checkbox(label="Enable Web Search", elem_id="websearch-mode")
|
166 |
+
with gr.Column(scale=1):
|
167 |
+
submit = gr.Button("Submit")
|
168 |
+
|
169 |
+
output_label = gr.Label(label="Output")
|
170 |
+
audio_output = gr.Audio(label="Audio Output", visible=False)
|
171 |
+
|
172 |
+
submit.click(
|
173 |
+
fn=main_interface,
|
174 |
+
inputs=[user_prompt, image_input, video_input, audio_input, doc_input, voice_only_mode, websearch_mode],
|
175 |
+
outputs=[output_label, audio_output] # Expecting a string and audio file
|
176 |
+
)
|
177 |
+
|
178 |
+
# Voice-only mode UI
|
179 |
+
voice_only_mode.change(
|
180 |
+
lambda x: gr.update(visible=not x),
|
181 |
+
inputs=voice_only_mode,
|
182 |
+
outputs=[user_prompt, image_input, video_input, doc_input, websearch_mode, submit]
|
183 |
+
)
|
184 |
+
voice_only_mode.change(
|
185 |
+
lambda x: gr.update(visible=x),
|
186 |
+
inputs=voice_only_mode,
|
187 |
+
outputs=[audio_input]
|
188 |
+
)
|
189 |
+
|
190 |
+
return demo
|
191 |
|
192 |
+
# Launch the app
|
193 |
+
demo = create_ui()
|
194 |
demo.launch(inline=False)
|