Spaces:
Running
on
Zero
Running
on
Zero
# ------------------------------------------------------------------------------------------ | |
# Copyright (c) 2024 Baifeng Shi. | |
# All rights reserved. | |
# | |
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. | |
# ------------------------------------------------------------------------------------------ | |
import torch | |
def split_chessboard(x, num_split): | |
""" | |
x: b * c * h * w | |
Deividing x into num_split**2 sub-squares, and concatenate all the sub-squares on the batch dimension | |
""" | |
B, C, H, W = x.shape | |
assert H % num_split == 0 and W % num_split == 0 | |
h, w = H // num_split, W // num_split | |
x_split = torch.cat( | |
[ | |
x[:, :, i * h : (i + 1) * h, j * w : (j + 1) * w] | |
for i in range(num_split) | |
for j in range(num_split) | |
], | |
dim=0, | |
) | |
return x_split | |
def merge_chessboard(x, num_split): | |
""" | |
x: b * c * h * w | |
Assuming x contains num_split**2 sub-squares concatenated along batch dimension, merge the sub-squares back to the original whole square. | |
(inverse of split_chessboard) | |
""" | |
B, C, H, W = x.shape | |
assert B % (num_split**2) == 0 | |
b = B // (num_split**2) | |
x_merge = torch.cat( | |
[ | |
torch.cat( | |
[ | |
x[(i * num_split + j) * b : (i * num_split + j + 1) * b] | |
for j in range(num_split) | |
], | |
dim=-1, | |
) | |
for i in range(num_split) | |
], | |
dim=-2, | |
) | |
return x_merge | |
def batched_forward(model, x, batch_size=-1): | |
if batch_size == -1: | |
return model(x) | |
else: | |
x_batched = x.split(batch_size) | |
outs = [model(x) for x in x_batched] | |
return torch.cat(outs, dim=0) | |