# ------------------------------------------------------------------------------------------ # Copyright (c) 2024 Baifeng Shi. # All rights reserved. # # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # ------------------------------------------------------------------------------------------ import torch def split_chessboard(x, num_split): """ x: b * c * h * w Deividing x into num_split**2 sub-squares, and concatenate all the sub-squares on the batch dimension """ B, C, H, W = x.shape assert H % num_split == 0 and W % num_split == 0 h, w = H // num_split, W // num_split x_split = torch.cat( [ x[:, :, i * h : (i + 1) * h, j * w : (j + 1) * w] for i in range(num_split) for j in range(num_split) ], dim=0, ) return x_split def merge_chessboard(x, num_split): """ x: b * c * h * w Assuming x contains num_split**2 sub-squares concatenated along batch dimension, merge the sub-squares back to the original whole square. (inverse of split_chessboard) """ B, C, H, W = x.shape assert B % (num_split**2) == 0 b = B // (num_split**2) x_merge = torch.cat( [ torch.cat( [ x[(i * num_split + j) * b : (i * num_split + j + 1) * b] for j in range(num_split) ], dim=-1, ) for i in range(num_split) ], dim=-2, ) return x_merge def batched_forward(model, x, batch_size=-1): if batch_size == -1: return model(x) else: x_batched = x.split(batch_size) outs = [model(x) for x in x_batched] return torch.cat(outs, dim=0)