VITA-1.5 / vita /train /train.py
lxysl's picture
upload vita-1.5 app.py
bc752b1
import logging
import os
import pathlib
import random
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
import torch
import transformers
from transformers import set_seed
from vita import conversation as conversation_lib
from vita.model import *
from vita.train.vita_trainer import VITATrainer
from vita.util.data_utils_video_audio_neg_patch import make_supervised_data_module, DataArguments
#from vita.util.data_utils_video_audio_neg_patch_fo import make_supervised_data_module, DataArguments
#from vita.util.data_utils_video_audio_patch import make_supervised_data_module, DataArguments
#from vita.util.data_utils_video_audio_patch_sf import make_supervised_data_module, DataArguments
#from vita.util.data_utils_video_patch_audio import make_supervised_data_module, DataArguments
def set_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
set_seed(seed)
set_random_seed(42)
local_rank = None
def rank0_print(*args):
if local_rank == 0:
print(*args)
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default=None)
model_type: Optional[str] = field(default=None)
version: Optional[str] = field(default=None)
freeze_backbone: bool = field(default=False)
tune_mm_mlp_adapter: bool = field(default=False)
tune_audio_mlp_adapter: bool = field(default=False)
audio_prompt_finetune: bool = field(default=False)
audio_prompt_num: Optional[int] = field(default=None)
audio_state_predictor_tuning: bool = field(default=False)
vision_tower: Optional[str] = field(default=None)
audio_encoder: Optional[str] = field(default=None)
freeze_audio_encoder: bool = field(default=True)
freeze_audio_encoder_adapter: bool = field(default=True)
unfreeze_vision_tower: bool = field(default=False)
use_s2: bool = field(default=False)
pretrain_audio_mlp_adapter: Optional[str] = field(default=None)
pretrain_mm_mlp_adapter: Optional[str] = field(default=None)
mm_projector_type: Optional[str] = field(default="mlp2x_gelu")
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
remove_unused_columns: bool = field(default=False)
freeze_mm_mlp_adapter: bool = field(default=False)
mpt_attn_impl: Optional[str] = field(default="triton")
model_max_length: int = field(
default=512,
metadata={
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
double_quant: bool = field(
default=True,
metadata={"help": "Compress the quantization statistics through double quantization."},
)
quant_type: str = field(
default="nf4",
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."},
)
bits: int = field(default=16, metadata={"help": "How many bits to use."})
lora_enable: bool = False
lora_r: int = 64
lora_alpha: int = 16
lora_dropout: float = 0.05
lora_weight_path: str = ""
lora_bias: str = "none"
mm_projector_lr: Optional[float] = None
group_by_modality_length: bool = field(default=False)
def maybe_zero_3(param, ignore_status=False, name=None):
from deepspeed import zero
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
if hasattr(param, "ds_id"):
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
if not ignore_status:
logging.warning(
f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}"
)
with zero.GatheredParameters([param]):
param = param.data.detach().cpu().clone()
else:
param = param.detach().cpu().clone()
return param
# Borrowed from peft.util.get_peft_model_state_dict
def get_peft_state_maybe_zero_3(named_params, bias):
if bias == "none":
to_return = {k: t for k, t in named_params if "lora_" in k}
elif bias == "all":
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
elif bias == "lora_only":
to_return = {}
maybe_lora_bias = {}
lora_bias_names = set()
for k, t in named_params:
if "lora_" in k:
to_return[k] = t
bias_name = k.split("lora_")[0] + "bias"
lora_bias_names.add(bias_name)
elif "bias" in k:
maybe_lora_bias[k] = t
for k, t in maybe_lora_bias:
if bias_name in lora_bias_names:
to_return[bias_name] = t
else:
raise NotImplementedError
to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()}
return to_return
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
to_return = {k: t for k, t in named_params if "lora_" not in k}
if require_grad_only:
to_return = {k: t for k, t in to_return.items() if t.requires_grad}
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
return to_return
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
to_return = {
k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)
}
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
return to_return
def find_all_linear_names(model):
cls = torch.nn.Linear
lora_module_names = set()
multimodal_keywords = ["mm_projector", "vision_tower", "vision_resampler"]
for name, module in model.named_modules():
if any(mm_keyword in name for mm_keyword in multimodal_keywords):
continue
if isinstance(module, cls):
names = name.split(".")
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if "lm_head" in lora_module_names: # needed for 16-bit
lora_module_names.remove("lm_head")
return list(lora_module_names)
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str):
"""Collects the state dict and dump to disk."""
if getattr(trainer.args, "tune_mm_mlp_adapter", False):
# Only save Adapter
keys_to_match = ["mm_projector"]
if getattr(trainer.args, "use_im_start_end", False):
keys_to_match.extend(["embed_tokens", "embed_in"])
weight_to_save = get_mm_adapter_state_maybe_zero_3(
trainer.model.named_parameters(), keys_to_match
)
trainer.model.config.save_pretrained(output_dir)
current_folder = output_dir.split("/")[-1]
parent_folder = os.path.dirname(output_dir)
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1:
if current_folder.startswith("checkpoint-"):
mm_projector_folder = os.path.join(parent_folder, "mm_projector")
os.makedirs(mm_projector_folder, exist_ok=True)
torch.save(
weight_to_save, os.path.join(mm_projector_folder, f"{current_folder}.bin")
)
else:
torch.save(weight_to_save, os.path.join(output_dir, f"mm_projector.bin"))
return
if trainer.deepspeed:
torch.cuda.synchronize()
trainer.save_model(output_dir)
return
state_dict = trainer.model.state_dict()
if trainer.args.should_save:
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
del state_dict
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
def train():
global local_rank
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
local_rank = training_args.local_rank
compute_dtype = (
torch.float16
if training_args.fp16
else (torch.bfloat16 if training_args.bf16 else torch.float32)
)
bnb_model_from_pretrained_args = {}
if training_args.bits in [4, 8]:
from transformers import BitsAndBytesConfig
bnb_model_from_pretrained_args.update(
dict(
device_map={"": training_args.device},
load_in_4bit=training_args.bits == 4,
load_in_8bit=training_args.bits == 8,
quantization_config=BitsAndBytesConfig(
load_in_4bit=training_args.bits == 4,
load_in_8bit=training_args.bits == 8,
llm_int8_skip_modules=["mm_projector"],
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=training_args.double_quant,
bnb_4bit_quant_type=training_args.quant_type, # {'fp4', 'nf4'}
),
)
)
assert model_args.vision_tower is not None
if model_args.model_type in {"mixtral-8x7b", "nemo", "qwen2p5_instruct", "qwen2p5_fo_instruct"}:
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="right",
use_fast=True,
)
if tokenizer.unk_token is not None and tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.unk_token
if model_args.model_type == "llama3-8b":
tokenizer.pad_token = tokenizer.eos_token
if model_args.model_type == "mixtral-8x7b":
torch_dtype = torch.float16 if training_args.fp16 else torch.bfloat16
model = VITAMixtralForCausalLM.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
torch_dtype=torch_dtype,
attn_implementation="flash_attention_2",
**bnb_model_from_pretrained_args,
)
elif model_args.model_type == "nemo":
torch_dtype = torch.float16 if training_args.fp16 else torch.bfloat16
model = VITAMistralForCausalLM.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
torch_dtype=torch_dtype,
attn_implementation="flash_attention_2",
**bnb_model_from_pretrained_args,
)
elif model_args.model_type == "qwen2p5_instruct":
torch_dtype = torch.float16 if training_args.fp16 else torch.bfloat16
model = VITAQwen2ForCausalLM.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
torch_dtype=torch_dtype,
attn_implementation="flash_attention_2",
**bnb_model_from_pretrained_args,
)
elif model_args.model_type == "qwen2p5_fo_instruct":
torch_dtype = torch.float16 if training_args.fp16 else torch.bfloat16
model = VITAFOQwen2ForCausalLM.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
torch_dtype=torch_dtype,
attn_implementation="flash_attention_2",
**bnb_model_from_pretrained_args,
)
else:
raise ValueError(f"Unknown Model Type {model_args.model_type}")
model.config.use_cache = False
if model_args.freeze_backbone:
model.model.requires_grad_(False)
if training_args.bits in [4, 8]:
from peft import prepare_model_for_kbit_training
model.config.torch_dtype = (
torch.float32
if training_args.fp16
else (torch.bfloat16 if training_args.bf16 else torch.float32)
)
model = prepare_model_for_kbit_training(
model, use_gradient_checkpointing=training_args.gradient_checkpointing
)
if training_args.gradient_checkpointing:
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
if training_args.lora_enable:
from peft import LoraConfig, get_peft_model
lora_config = LoraConfig(
r=training_args.lora_r,
lora_alpha=training_args.lora_alpha,
target_modules=find_all_linear_names(model),
lora_dropout=training_args.lora_dropout,
bias=training_args.lora_bias,
task_type="CAUSAL_LM",
)
if training_args.bits == 16:
if training_args.bf16:
model.to(torch.bfloat16)
if training_args.fp16:
model.to(torch.float16)
rank0_print("Adding LoRA adapters...")
model = get_peft_model(model, lora_config)
if model_args.version in conversation_lib.conv_templates:
conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version]
else:
conversation_lib.default_conversation = conversation_lib.conv_templates["default"]
model.get_model().initialize_vision_modules(model_args=model_args)
model.config.freeze_audio_encoder = model_args.freeze_audio_encoder
model.config.freeze_audio_encoder_adapter = model_args.freeze_audio_encoder_adapter
model.config.audio_prompt_finetune = model_args.audio_prompt_finetune
model.config.audio_prompt_num = model_args.audio_prompt_num
model.get_model().initialize_audio_modules(model_args=model_args)
vision_tower = model.get_vision_tower()
vision_tower.to(
dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device
)
audio_encoder = model.get_audio_encoder()
audio_encoder.to(
dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device
)
data_args.image_processor = vision_tower.image_processor
data_args.audio_processor = audio_encoder.audio_processor
model.config.image_aspect_ratio = data_args.image_aspect_ratio
model.config.tokenizer_padding_side = tokenizer.padding_side
model.config.tokenizer_model_max_length = tokenizer.model_max_length
model.config.tune_mm_mlp_adapter = (
training_args.tune_mm_mlp_adapter
) = model_args.tune_mm_mlp_adapter
if model_args.tune_mm_mlp_adapter:
model.requires_grad_(False)
for p in model.get_model().mm_projector.parameters():
p.requires_grad = True
model.config.tune_audio_mlp_adapter = (
training_args.tune_audio_mlp_adapter
) = model_args.tune_audio_mlp_adapter
if model_args.tune_audio_mlp_adapter:
model.requires_grad_(False)
for p in model.model.audio_encoder.adpter.parameters():
p.requires_grad = True
model.config.audio_prompt_finetune = (
training_args.audio_prompt_finetune
) = model_args.audio_prompt_finetune
model.config.audio_state_predictor_tuning = (
training_args.audio_state_predictor_tuning
) = model_args.audio_state_predictor_tuning
if model_args.audio_prompt_finetune or model_args.audio_state_predictor_tuning:
model.requires_grad_(False)
if model_args.audio_prompt_finetune:
for p in model.model.audio_encoder.prompt_embeddings.parameters():
p.requires_grad = True
if model_args.audio_state_predictor_tuning:
for p in model.predictor_head.parameters():
p.requires_grad = True
model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter
if training_args.freeze_mm_mlp_adapter:
for p in model.get_model().mm_projector.parameters():
p.requires_grad = False
if training_args.bits in [4, 8]:
model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device)
model.config.mm_projector_lr = training_args.mm_projector_lr
model.config.use_s2 = model_args.use_s2
model.config.unfreeze_vision_tower = (
training_args.unfreeze_vision_tower
) = model_args.unfreeze_vision_tower
if training_args.unfreeze_vision_tower:
for p in model.get_model().vision_tower.parameters():
p.requires_grad = True
if training_args.bits in [4, 8]:
from peft.tuners.lora import LoraLayer
for name, module in model.named_modules():
if isinstance(module, LoraLayer):
if training_args.bf16:
module = module.to(torch.bfloat16)
if "norm" in name:
module = module.to(torch.float32)
if "lm_head" in name or "embed_tokens" in name:
if hasattr(module, "weight"):
if training_args.bf16 and module.weight.dtype == torch.float32:
module = module.to(torch.bfloat16)
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
trainer = VITATrainer(model=model, tokenizer=tokenizer, args=training_args, **data_module)
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
trainer.train(resume_from_checkpoint=True)
else:
trainer.train()
trainer.save_state()
model.config.use_cache = True
if training_args.lora_enable:
state_dict = get_peft_state_maybe_zero_3(model.named_parameters(), training_args.lora_bias)
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(model.named_parameters())
if training_args.local_rank == 0 or training_args.local_rank == -1:
model.config.save_pretrained(training_args.output_dir)
model.save_pretrained(training_args.output_dir, state_dict=state_dict)
torch.save(
non_lora_state_dict,
os.path.join(training_args.output_dir, "non_lora_trainables.bin"),
)
else:
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir)
if __name__ == "__main__":
train()