Spaces:
Running
on
Zero
Running
on
Zero
import logging | |
import os | |
import pathlib | |
import random | |
from dataclasses import dataclass, field | |
from typing import Optional | |
import numpy as np | |
import torch | |
import transformers | |
from transformers import set_seed | |
from vita import conversation as conversation_lib | |
from vita.model import * | |
from vita.train.vita_trainer import VITATrainer | |
from vita.util.data_utils_video_audio_neg_patch import make_supervised_data_module, DataArguments | |
#from vita.util.data_utils_video_audio_neg_patch_fo import make_supervised_data_module, DataArguments | |
#from vita.util.data_utils_video_audio_patch import make_supervised_data_module, DataArguments | |
#from vita.util.data_utils_video_audio_patch_sf import make_supervised_data_module, DataArguments | |
#from vita.util.data_utils_video_patch_audio import make_supervised_data_module, DataArguments | |
def set_random_seed(seed): | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
if torch.cuda.is_available(): | |
torch.cuda.manual_seed_all(seed) | |
set_seed(seed) | |
set_random_seed(42) | |
local_rank = None | |
def rank0_print(*args): | |
if local_rank == 0: | |
print(*args) | |
class ModelArguments: | |
model_name_or_path: Optional[str] = field(default=None) | |
model_type: Optional[str] = field(default=None) | |
version: Optional[str] = field(default=None) | |
freeze_backbone: bool = field(default=False) | |
tune_mm_mlp_adapter: bool = field(default=False) | |
tune_audio_mlp_adapter: bool = field(default=False) | |
audio_prompt_finetune: bool = field(default=False) | |
audio_prompt_num: Optional[int] = field(default=None) | |
audio_state_predictor_tuning: bool = field(default=False) | |
vision_tower: Optional[str] = field(default=None) | |
audio_encoder: Optional[str] = field(default=None) | |
freeze_audio_encoder: bool = field(default=True) | |
freeze_audio_encoder_adapter: bool = field(default=True) | |
unfreeze_vision_tower: bool = field(default=False) | |
use_s2: bool = field(default=False) | |
pretrain_audio_mlp_adapter: Optional[str] = field(default=None) | |
pretrain_mm_mlp_adapter: Optional[str] = field(default=None) | |
mm_projector_type: Optional[str] = field(default="mlp2x_gelu") | |
class TrainingArguments(transformers.TrainingArguments): | |
cache_dir: Optional[str] = field(default=None) | |
optim: str = field(default="adamw_torch") | |
remove_unused_columns: bool = field(default=False) | |
freeze_mm_mlp_adapter: bool = field(default=False) | |
mpt_attn_impl: Optional[str] = field(default="triton") | |
model_max_length: int = field( | |
default=512, | |
metadata={ | |
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)." | |
}, | |
) | |
double_quant: bool = field( | |
default=True, | |
metadata={"help": "Compress the quantization statistics through double quantization."}, | |
) | |
quant_type: str = field( | |
default="nf4", | |
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}, | |
) | |
bits: int = field(default=16, metadata={"help": "How many bits to use."}) | |
lora_enable: bool = False | |
lora_r: int = 64 | |
lora_alpha: int = 16 | |
lora_dropout: float = 0.05 | |
lora_weight_path: str = "" | |
lora_bias: str = "none" | |
mm_projector_lr: Optional[float] = None | |
group_by_modality_length: bool = field(default=False) | |
def maybe_zero_3(param, ignore_status=False, name=None): | |
from deepspeed import zero | |
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus | |
if hasattr(param, "ds_id"): | |
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: | |
if not ignore_status: | |
logging.warning( | |
f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}" | |
) | |
with zero.GatheredParameters([param]): | |
param = param.data.detach().cpu().clone() | |
else: | |
param = param.detach().cpu().clone() | |
return param | |
# Borrowed from peft.util.get_peft_model_state_dict | |
def get_peft_state_maybe_zero_3(named_params, bias): | |
if bias == "none": | |
to_return = {k: t for k, t in named_params if "lora_" in k} | |
elif bias == "all": | |
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} | |
elif bias == "lora_only": | |
to_return = {} | |
maybe_lora_bias = {} | |
lora_bias_names = set() | |
for k, t in named_params: | |
if "lora_" in k: | |
to_return[k] = t | |
bias_name = k.split("lora_")[0] + "bias" | |
lora_bias_names.add(bias_name) | |
elif "bias" in k: | |
maybe_lora_bias[k] = t | |
for k, t in maybe_lora_bias: | |
if bias_name in lora_bias_names: | |
to_return[bias_name] = t | |
else: | |
raise NotImplementedError | |
to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()} | |
return to_return | |
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True): | |
to_return = {k: t for k, t in named_params if "lora_" not in k} | |
if require_grad_only: | |
to_return = {k: t for k, t in to_return.items() if t.requires_grad} | |
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} | |
return to_return | |
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match): | |
to_return = { | |
k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match) | |
} | |
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} | |
return to_return | |
def find_all_linear_names(model): | |
cls = torch.nn.Linear | |
lora_module_names = set() | |
multimodal_keywords = ["mm_projector", "vision_tower", "vision_resampler"] | |
for name, module in model.named_modules(): | |
if any(mm_keyword in name for mm_keyword in multimodal_keywords): | |
continue | |
if isinstance(module, cls): | |
names = name.split(".") | |
lora_module_names.add(names[0] if len(names) == 1 else names[-1]) | |
if "lm_head" in lora_module_names: # needed for 16-bit | |
lora_module_names.remove("lm_head") | |
return list(lora_module_names) | |
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str): | |
"""Collects the state dict and dump to disk.""" | |
if getattr(trainer.args, "tune_mm_mlp_adapter", False): | |
# Only save Adapter | |
keys_to_match = ["mm_projector"] | |
if getattr(trainer.args, "use_im_start_end", False): | |
keys_to_match.extend(["embed_tokens", "embed_in"]) | |
weight_to_save = get_mm_adapter_state_maybe_zero_3( | |
trainer.model.named_parameters(), keys_to_match | |
) | |
trainer.model.config.save_pretrained(output_dir) | |
current_folder = output_dir.split("/")[-1] | |
parent_folder = os.path.dirname(output_dir) | |
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1: | |
if current_folder.startswith("checkpoint-"): | |
mm_projector_folder = os.path.join(parent_folder, "mm_projector") | |
os.makedirs(mm_projector_folder, exist_ok=True) | |
torch.save( | |
weight_to_save, os.path.join(mm_projector_folder, f"{current_folder}.bin") | |
) | |
else: | |
torch.save(weight_to_save, os.path.join(output_dir, f"mm_projector.bin")) | |
return | |
if trainer.deepspeed: | |
torch.cuda.synchronize() | |
trainer.save_model(output_dir) | |
return | |
state_dict = trainer.model.state_dict() | |
if trainer.args.should_save: | |
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()} | |
del state_dict | |
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa | |
def train(): | |
global local_rank | |
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments)) | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
local_rank = training_args.local_rank | |
compute_dtype = ( | |
torch.float16 | |
if training_args.fp16 | |
else (torch.bfloat16 if training_args.bf16 else torch.float32) | |
) | |
bnb_model_from_pretrained_args = {} | |
if training_args.bits in [4, 8]: | |
from transformers import BitsAndBytesConfig | |
bnb_model_from_pretrained_args.update( | |
dict( | |
device_map={"": training_args.device}, | |
load_in_4bit=training_args.bits == 4, | |
load_in_8bit=training_args.bits == 8, | |
quantization_config=BitsAndBytesConfig( | |
load_in_4bit=training_args.bits == 4, | |
load_in_8bit=training_args.bits == 8, | |
llm_int8_skip_modules=["mm_projector"], | |
llm_int8_threshold=6.0, | |
llm_int8_has_fp16_weight=False, | |
bnb_4bit_compute_dtype=compute_dtype, | |
bnb_4bit_use_double_quant=training_args.double_quant, | |
bnb_4bit_quant_type=training_args.quant_type, # {'fp4', 'nf4'} | |
), | |
) | |
) | |
assert model_args.vision_tower is not None | |
if model_args.model_type in {"mixtral-8x7b", "nemo", "qwen2p5_instruct", "qwen2p5_fo_instruct"}: | |
tokenizer = transformers.AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
model_max_length=training_args.model_max_length, | |
padding_side="right", | |
use_fast=True, | |
) | |
if tokenizer.unk_token is not None and tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.unk_token | |
if model_args.model_type == "llama3-8b": | |
tokenizer.pad_token = tokenizer.eos_token | |
if model_args.model_type == "mixtral-8x7b": | |
torch_dtype = torch.float16 if training_args.fp16 else torch.bfloat16 | |
model = VITAMixtralForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
torch_dtype=torch_dtype, | |
attn_implementation="flash_attention_2", | |
**bnb_model_from_pretrained_args, | |
) | |
elif model_args.model_type == "nemo": | |
torch_dtype = torch.float16 if training_args.fp16 else torch.bfloat16 | |
model = VITAMistralForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
torch_dtype=torch_dtype, | |
attn_implementation="flash_attention_2", | |
**bnb_model_from_pretrained_args, | |
) | |
elif model_args.model_type == "qwen2p5_instruct": | |
torch_dtype = torch.float16 if training_args.fp16 else torch.bfloat16 | |
model = VITAQwen2ForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
torch_dtype=torch_dtype, | |
attn_implementation="flash_attention_2", | |
**bnb_model_from_pretrained_args, | |
) | |
elif model_args.model_type == "qwen2p5_fo_instruct": | |
torch_dtype = torch.float16 if training_args.fp16 else torch.bfloat16 | |
model = VITAFOQwen2ForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
torch_dtype=torch_dtype, | |
attn_implementation="flash_attention_2", | |
**bnb_model_from_pretrained_args, | |
) | |
else: | |
raise ValueError(f"Unknown Model Type {model_args.model_type}") | |
model.config.use_cache = False | |
if model_args.freeze_backbone: | |
model.model.requires_grad_(False) | |
if training_args.bits in [4, 8]: | |
from peft import prepare_model_for_kbit_training | |
model.config.torch_dtype = ( | |
torch.float32 | |
if training_args.fp16 | |
else (torch.bfloat16 if training_args.bf16 else torch.float32) | |
) | |
model = prepare_model_for_kbit_training( | |
model, use_gradient_checkpointing=training_args.gradient_checkpointing | |
) | |
if training_args.gradient_checkpointing: | |
if hasattr(model, "enable_input_require_grads"): | |
model.enable_input_require_grads() | |
else: | |
def make_inputs_require_grad(module, input, output): | |
output.requires_grad_(True) | |
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) | |
if training_args.lora_enable: | |
from peft import LoraConfig, get_peft_model | |
lora_config = LoraConfig( | |
r=training_args.lora_r, | |
lora_alpha=training_args.lora_alpha, | |
target_modules=find_all_linear_names(model), | |
lora_dropout=training_args.lora_dropout, | |
bias=training_args.lora_bias, | |
task_type="CAUSAL_LM", | |
) | |
if training_args.bits == 16: | |
if training_args.bf16: | |
model.to(torch.bfloat16) | |
if training_args.fp16: | |
model.to(torch.float16) | |
rank0_print("Adding LoRA adapters...") | |
model = get_peft_model(model, lora_config) | |
if model_args.version in conversation_lib.conv_templates: | |
conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version] | |
else: | |
conversation_lib.default_conversation = conversation_lib.conv_templates["default"] | |
model.get_model().initialize_vision_modules(model_args=model_args) | |
model.config.freeze_audio_encoder = model_args.freeze_audio_encoder | |
model.config.freeze_audio_encoder_adapter = model_args.freeze_audio_encoder_adapter | |
model.config.audio_prompt_finetune = model_args.audio_prompt_finetune | |
model.config.audio_prompt_num = model_args.audio_prompt_num | |
model.get_model().initialize_audio_modules(model_args=model_args) | |
vision_tower = model.get_vision_tower() | |
vision_tower.to( | |
dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device | |
) | |
audio_encoder = model.get_audio_encoder() | |
audio_encoder.to( | |
dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device | |
) | |
data_args.image_processor = vision_tower.image_processor | |
data_args.audio_processor = audio_encoder.audio_processor | |
model.config.image_aspect_ratio = data_args.image_aspect_ratio | |
model.config.tokenizer_padding_side = tokenizer.padding_side | |
model.config.tokenizer_model_max_length = tokenizer.model_max_length | |
model.config.tune_mm_mlp_adapter = ( | |
training_args.tune_mm_mlp_adapter | |
) = model_args.tune_mm_mlp_adapter | |
if model_args.tune_mm_mlp_adapter: | |
model.requires_grad_(False) | |
for p in model.get_model().mm_projector.parameters(): | |
p.requires_grad = True | |
model.config.tune_audio_mlp_adapter = ( | |
training_args.tune_audio_mlp_adapter | |
) = model_args.tune_audio_mlp_adapter | |
if model_args.tune_audio_mlp_adapter: | |
model.requires_grad_(False) | |
for p in model.model.audio_encoder.adpter.parameters(): | |
p.requires_grad = True | |
model.config.audio_prompt_finetune = ( | |
training_args.audio_prompt_finetune | |
) = model_args.audio_prompt_finetune | |
model.config.audio_state_predictor_tuning = ( | |
training_args.audio_state_predictor_tuning | |
) = model_args.audio_state_predictor_tuning | |
if model_args.audio_prompt_finetune or model_args.audio_state_predictor_tuning: | |
model.requires_grad_(False) | |
if model_args.audio_prompt_finetune: | |
for p in model.model.audio_encoder.prompt_embeddings.parameters(): | |
p.requires_grad = True | |
if model_args.audio_state_predictor_tuning: | |
for p in model.predictor_head.parameters(): | |
p.requires_grad = True | |
model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter | |
if training_args.freeze_mm_mlp_adapter: | |
for p in model.get_model().mm_projector.parameters(): | |
p.requires_grad = False | |
if training_args.bits in [4, 8]: | |
model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device) | |
model.config.mm_projector_lr = training_args.mm_projector_lr | |
model.config.use_s2 = model_args.use_s2 | |
model.config.unfreeze_vision_tower = ( | |
training_args.unfreeze_vision_tower | |
) = model_args.unfreeze_vision_tower | |
if training_args.unfreeze_vision_tower: | |
for p in model.get_model().vision_tower.parameters(): | |
p.requires_grad = True | |
if training_args.bits in [4, 8]: | |
from peft.tuners.lora import LoraLayer | |
for name, module in model.named_modules(): | |
if isinstance(module, LoraLayer): | |
if training_args.bf16: | |
module = module.to(torch.bfloat16) | |
if "norm" in name: | |
module = module.to(torch.float32) | |
if "lm_head" in name or "embed_tokens" in name: | |
if hasattr(module, "weight"): | |
if training_args.bf16 and module.weight.dtype == torch.float32: | |
module = module.to(torch.bfloat16) | |
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args) | |
trainer = VITATrainer(model=model, tokenizer=tokenizer, args=training_args, **data_module) | |
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): | |
trainer.train(resume_from_checkpoint=True) | |
else: | |
trainer.train() | |
trainer.save_state() | |
model.config.use_cache = True | |
if training_args.lora_enable: | |
state_dict = get_peft_state_maybe_zero_3(model.named_parameters(), training_args.lora_bias) | |
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(model.named_parameters()) | |
if training_args.local_rank == 0 or training_args.local_rank == -1: | |
model.config.save_pretrained(training_args.output_dir) | |
model.save_pretrained(training_args.output_dir, state_dict=state_dict) | |
torch.save( | |
non_lora_state_dict, | |
os.path.join(training_args.output_dir, "non_lora_trainables.bin"), | |
) | |
else: | |
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir) | |
if __name__ == "__main__": | |
train() | |