Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,361 Bytes
bc752b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
import logging
import os
import pathlib
import random
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
import torch
import transformers
from transformers import set_seed
from vita import conversation as conversation_lib
from vita.model import *
from vita.train.vita_trainer import VITATrainer
from vita.util.data_utils_video_audio_neg_patch import make_supervised_data_module, DataArguments
#from vita.util.data_utils_video_audio_neg_patch_fo import make_supervised_data_module, DataArguments
#from vita.util.data_utils_video_audio_patch import make_supervised_data_module, DataArguments
#from vita.util.data_utils_video_audio_patch_sf import make_supervised_data_module, DataArguments
#from vita.util.data_utils_video_patch_audio import make_supervised_data_module, DataArguments
def set_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
set_seed(seed)
set_random_seed(42)
local_rank = None
def rank0_print(*args):
if local_rank == 0:
print(*args)
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default=None)
model_type: Optional[str] = field(default=None)
version: Optional[str] = field(default=None)
freeze_backbone: bool = field(default=False)
tune_mm_mlp_adapter: bool = field(default=False)
tune_audio_mlp_adapter: bool = field(default=False)
audio_prompt_finetune: bool = field(default=False)
audio_prompt_num: Optional[int] = field(default=None)
audio_state_predictor_tuning: bool = field(default=False)
vision_tower: Optional[str] = field(default=None)
audio_encoder: Optional[str] = field(default=None)
freeze_audio_encoder: bool = field(default=True)
freeze_audio_encoder_adapter: bool = field(default=True)
unfreeze_vision_tower: bool = field(default=False)
use_s2: bool = field(default=False)
pretrain_audio_mlp_adapter: Optional[str] = field(default=None)
pretrain_mm_mlp_adapter: Optional[str] = field(default=None)
mm_projector_type: Optional[str] = field(default="mlp2x_gelu")
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
remove_unused_columns: bool = field(default=False)
freeze_mm_mlp_adapter: bool = field(default=False)
mpt_attn_impl: Optional[str] = field(default="triton")
model_max_length: int = field(
default=512,
metadata={
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
double_quant: bool = field(
default=True,
metadata={"help": "Compress the quantization statistics through double quantization."},
)
quant_type: str = field(
default="nf4",
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."},
)
bits: int = field(default=16, metadata={"help": "How many bits to use."})
lora_enable: bool = False
lora_r: int = 64
lora_alpha: int = 16
lora_dropout: float = 0.05
lora_weight_path: str = ""
lora_bias: str = "none"
mm_projector_lr: Optional[float] = None
group_by_modality_length: bool = field(default=False)
def maybe_zero_3(param, ignore_status=False, name=None):
from deepspeed import zero
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
if hasattr(param, "ds_id"):
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
if not ignore_status:
logging.warning(
f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}"
)
with zero.GatheredParameters([param]):
param = param.data.detach().cpu().clone()
else:
param = param.detach().cpu().clone()
return param
# Borrowed from peft.util.get_peft_model_state_dict
def get_peft_state_maybe_zero_3(named_params, bias):
if bias == "none":
to_return = {k: t for k, t in named_params if "lora_" in k}
elif bias == "all":
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
elif bias == "lora_only":
to_return = {}
maybe_lora_bias = {}
lora_bias_names = set()
for k, t in named_params:
if "lora_" in k:
to_return[k] = t
bias_name = k.split("lora_")[0] + "bias"
lora_bias_names.add(bias_name)
elif "bias" in k:
maybe_lora_bias[k] = t
for k, t in maybe_lora_bias:
if bias_name in lora_bias_names:
to_return[bias_name] = t
else:
raise NotImplementedError
to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()}
return to_return
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
to_return = {k: t for k, t in named_params if "lora_" not in k}
if require_grad_only:
to_return = {k: t for k, t in to_return.items() if t.requires_grad}
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
return to_return
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
to_return = {
k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)
}
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
return to_return
def find_all_linear_names(model):
cls = torch.nn.Linear
lora_module_names = set()
multimodal_keywords = ["mm_projector", "vision_tower", "vision_resampler"]
for name, module in model.named_modules():
if any(mm_keyword in name for mm_keyword in multimodal_keywords):
continue
if isinstance(module, cls):
names = name.split(".")
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if "lm_head" in lora_module_names: # needed for 16-bit
lora_module_names.remove("lm_head")
return list(lora_module_names)
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str):
"""Collects the state dict and dump to disk."""
if getattr(trainer.args, "tune_mm_mlp_adapter", False):
# Only save Adapter
keys_to_match = ["mm_projector"]
if getattr(trainer.args, "use_im_start_end", False):
keys_to_match.extend(["embed_tokens", "embed_in"])
weight_to_save = get_mm_adapter_state_maybe_zero_3(
trainer.model.named_parameters(), keys_to_match
)
trainer.model.config.save_pretrained(output_dir)
current_folder = output_dir.split("/")[-1]
parent_folder = os.path.dirname(output_dir)
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1:
if current_folder.startswith("checkpoint-"):
mm_projector_folder = os.path.join(parent_folder, "mm_projector")
os.makedirs(mm_projector_folder, exist_ok=True)
torch.save(
weight_to_save, os.path.join(mm_projector_folder, f"{current_folder}.bin")
)
else:
torch.save(weight_to_save, os.path.join(output_dir, f"mm_projector.bin"))
return
if trainer.deepspeed:
torch.cuda.synchronize()
trainer.save_model(output_dir)
return
state_dict = trainer.model.state_dict()
if trainer.args.should_save:
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
del state_dict
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
def train():
global local_rank
parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
local_rank = training_args.local_rank
compute_dtype = (
torch.float16
if training_args.fp16
else (torch.bfloat16 if training_args.bf16 else torch.float32)
)
bnb_model_from_pretrained_args = {}
if training_args.bits in [4, 8]:
from transformers import BitsAndBytesConfig
bnb_model_from_pretrained_args.update(
dict(
device_map={"": training_args.device},
load_in_4bit=training_args.bits == 4,
load_in_8bit=training_args.bits == 8,
quantization_config=BitsAndBytesConfig(
load_in_4bit=training_args.bits == 4,
load_in_8bit=training_args.bits == 8,
llm_int8_skip_modules=["mm_projector"],
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=training_args.double_quant,
bnb_4bit_quant_type=training_args.quant_type, # {'fp4', 'nf4'}
),
)
)
assert model_args.vision_tower is not None
if model_args.model_type in {"mixtral-8x7b", "nemo", "qwen2p5_instruct", "qwen2p5_fo_instruct"}:
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="right",
use_fast=True,
)
if tokenizer.unk_token is not None and tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.unk_token
if model_args.model_type == "llama3-8b":
tokenizer.pad_token = tokenizer.eos_token
if model_args.model_type == "mixtral-8x7b":
torch_dtype = torch.float16 if training_args.fp16 else torch.bfloat16
model = VITAMixtralForCausalLM.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
torch_dtype=torch_dtype,
attn_implementation="flash_attention_2",
**bnb_model_from_pretrained_args,
)
elif model_args.model_type == "nemo":
torch_dtype = torch.float16 if training_args.fp16 else torch.bfloat16
model = VITAMistralForCausalLM.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
torch_dtype=torch_dtype,
attn_implementation="flash_attention_2",
**bnb_model_from_pretrained_args,
)
elif model_args.model_type == "qwen2p5_instruct":
torch_dtype = torch.float16 if training_args.fp16 else torch.bfloat16
model = VITAQwen2ForCausalLM.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
torch_dtype=torch_dtype,
attn_implementation="flash_attention_2",
**bnb_model_from_pretrained_args,
)
elif model_args.model_type == "qwen2p5_fo_instruct":
torch_dtype = torch.float16 if training_args.fp16 else torch.bfloat16
model = VITAFOQwen2ForCausalLM.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
torch_dtype=torch_dtype,
attn_implementation="flash_attention_2",
**bnb_model_from_pretrained_args,
)
else:
raise ValueError(f"Unknown Model Type {model_args.model_type}")
model.config.use_cache = False
if model_args.freeze_backbone:
model.model.requires_grad_(False)
if training_args.bits in [4, 8]:
from peft import prepare_model_for_kbit_training
model.config.torch_dtype = (
torch.float32
if training_args.fp16
else (torch.bfloat16 if training_args.bf16 else torch.float32)
)
model = prepare_model_for_kbit_training(
model, use_gradient_checkpointing=training_args.gradient_checkpointing
)
if training_args.gradient_checkpointing:
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
if training_args.lora_enable:
from peft import LoraConfig, get_peft_model
lora_config = LoraConfig(
r=training_args.lora_r,
lora_alpha=training_args.lora_alpha,
target_modules=find_all_linear_names(model),
lora_dropout=training_args.lora_dropout,
bias=training_args.lora_bias,
task_type="CAUSAL_LM",
)
if training_args.bits == 16:
if training_args.bf16:
model.to(torch.bfloat16)
if training_args.fp16:
model.to(torch.float16)
rank0_print("Adding LoRA adapters...")
model = get_peft_model(model, lora_config)
if model_args.version in conversation_lib.conv_templates:
conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version]
else:
conversation_lib.default_conversation = conversation_lib.conv_templates["default"]
model.get_model().initialize_vision_modules(model_args=model_args)
model.config.freeze_audio_encoder = model_args.freeze_audio_encoder
model.config.freeze_audio_encoder_adapter = model_args.freeze_audio_encoder_adapter
model.config.audio_prompt_finetune = model_args.audio_prompt_finetune
model.config.audio_prompt_num = model_args.audio_prompt_num
model.get_model().initialize_audio_modules(model_args=model_args)
vision_tower = model.get_vision_tower()
vision_tower.to(
dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device
)
audio_encoder = model.get_audio_encoder()
audio_encoder.to(
dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device
)
data_args.image_processor = vision_tower.image_processor
data_args.audio_processor = audio_encoder.audio_processor
model.config.image_aspect_ratio = data_args.image_aspect_ratio
model.config.tokenizer_padding_side = tokenizer.padding_side
model.config.tokenizer_model_max_length = tokenizer.model_max_length
model.config.tune_mm_mlp_adapter = (
training_args.tune_mm_mlp_adapter
) = model_args.tune_mm_mlp_adapter
if model_args.tune_mm_mlp_adapter:
model.requires_grad_(False)
for p in model.get_model().mm_projector.parameters():
p.requires_grad = True
model.config.tune_audio_mlp_adapter = (
training_args.tune_audio_mlp_adapter
) = model_args.tune_audio_mlp_adapter
if model_args.tune_audio_mlp_adapter:
model.requires_grad_(False)
for p in model.model.audio_encoder.adpter.parameters():
p.requires_grad = True
model.config.audio_prompt_finetune = (
training_args.audio_prompt_finetune
) = model_args.audio_prompt_finetune
model.config.audio_state_predictor_tuning = (
training_args.audio_state_predictor_tuning
) = model_args.audio_state_predictor_tuning
if model_args.audio_prompt_finetune or model_args.audio_state_predictor_tuning:
model.requires_grad_(False)
if model_args.audio_prompt_finetune:
for p in model.model.audio_encoder.prompt_embeddings.parameters():
p.requires_grad = True
if model_args.audio_state_predictor_tuning:
for p in model.predictor_head.parameters():
p.requires_grad = True
model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter
if training_args.freeze_mm_mlp_adapter:
for p in model.get_model().mm_projector.parameters():
p.requires_grad = False
if training_args.bits in [4, 8]:
model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device)
model.config.mm_projector_lr = training_args.mm_projector_lr
model.config.use_s2 = model_args.use_s2
model.config.unfreeze_vision_tower = (
training_args.unfreeze_vision_tower
) = model_args.unfreeze_vision_tower
if training_args.unfreeze_vision_tower:
for p in model.get_model().vision_tower.parameters():
p.requires_grad = True
if training_args.bits in [4, 8]:
from peft.tuners.lora import LoraLayer
for name, module in model.named_modules():
if isinstance(module, LoraLayer):
if training_args.bf16:
module = module.to(torch.bfloat16)
if "norm" in name:
module = module.to(torch.float32)
if "lm_head" in name or "embed_tokens" in name:
if hasattr(module, "weight"):
if training_args.bf16 and module.weight.dtype == torch.float32:
module = module.to(torch.bfloat16)
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
trainer = VITATrainer(model=model, tokenizer=tokenizer, args=training_args, **data_module)
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
trainer.train(resume_from_checkpoint=True)
else:
trainer.train()
trainer.save_state()
model.config.use_cache = True
if training_args.lora_enable:
state_dict = get_peft_state_maybe_zero_3(model.named_parameters(), training_args.lora_bias)
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(model.named_parameters())
if training_args.local_rank == 0 or training_args.local_rank == -1:
model.config.save_pretrained(training_args.output_dir)
model.save_pretrained(training_args.output_dir, state_dict=state_dict)
torch.save(
non_lora_state_dict,
os.path.join(training_args.output_dir, "non_lora_trainables.bin"),
)
else:
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir)
if __name__ == "__main__":
train()
|