File size: 18,361 Bytes
bc752b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
import logging
import os
import pathlib
import random
from dataclasses import dataclass, field
from typing import Optional

import numpy as np
import torch
import transformers
from transformers import set_seed

from vita import conversation as conversation_lib
from vita.model import *
from vita.train.vita_trainer import VITATrainer

from vita.util.data_utils_video_audio_neg_patch import make_supervised_data_module, DataArguments
#from vita.util.data_utils_video_audio_neg_patch_fo import make_supervised_data_module, DataArguments
#from vita.util.data_utils_video_audio_patch import make_supervised_data_module, DataArguments
#from vita.util.data_utils_video_audio_patch_sf import make_supervised_data_module, DataArguments
#from vita.util.data_utils_video_patch_audio import make_supervised_data_module, DataArguments


def set_random_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)
    set_seed(seed)


set_random_seed(42)


local_rank = None


def rank0_print(*args):
    if local_rank == 0:
        print(*args)


@dataclass
class ModelArguments:
    model_name_or_path: Optional[str] = field(default=None)
    model_type: Optional[str] = field(default=None)
    version: Optional[str] = field(default=None)
    freeze_backbone: bool = field(default=False)
    tune_mm_mlp_adapter: bool = field(default=False)
    tune_audio_mlp_adapter: bool = field(default=False)
    audio_prompt_finetune: bool = field(default=False)
    audio_prompt_num: Optional[int] = field(default=None)
    audio_state_predictor_tuning: bool = field(default=False)
    vision_tower: Optional[str] = field(default=None)
    audio_encoder: Optional[str] = field(default=None)
    freeze_audio_encoder: bool = field(default=True)
    freeze_audio_encoder_adapter: bool = field(default=True)
    unfreeze_vision_tower: bool = field(default=False)
    use_s2: bool = field(default=False)
    pretrain_audio_mlp_adapter: Optional[str] = field(default=None)
    pretrain_mm_mlp_adapter: Optional[str] = field(default=None)
    mm_projector_type: Optional[str] = field(default="mlp2x_gelu")


@dataclass
class TrainingArguments(transformers.TrainingArguments):
    cache_dir: Optional[str] = field(default=None)
    optim: str = field(default="adamw_torch")
    remove_unused_columns: bool = field(default=False)
    freeze_mm_mlp_adapter: bool = field(default=False)
    mpt_attn_impl: Optional[str] = field(default="triton")
    model_max_length: int = field(
        default=512,
        metadata={
            "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
        },
    )
    double_quant: bool = field(
        default=True,
        metadata={"help": "Compress the quantization statistics through double quantization."},
    )
    quant_type: str = field(
        default="nf4",
        metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."},
    )
    bits: int = field(default=16, metadata={"help": "How many bits to use."})
    lora_enable: bool = False
    lora_r: int = 64
    lora_alpha: int = 16
    lora_dropout: float = 0.05
    lora_weight_path: str = ""
    lora_bias: str = "none"
    mm_projector_lr: Optional[float] = None
    group_by_modality_length: bool = field(default=False)


def maybe_zero_3(param, ignore_status=False, name=None):
    from deepspeed import zero
    from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus

    if hasattr(param, "ds_id"):
        if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
            if not ignore_status:
                logging.warning(
                    f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}"
                )
        with zero.GatheredParameters([param]):
            param = param.data.detach().cpu().clone()
    else:
        param = param.detach().cpu().clone()
    return param


# Borrowed from peft.util.get_peft_model_state_dict
def get_peft_state_maybe_zero_3(named_params, bias):
    if bias == "none":
        to_return = {k: t for k, t in named_params if "lora_" in k}
    elif bias == "all":
        to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
    elif bias == "lora_only":
        to_return = {}
        maybe_lora_bias = {}
        lora_bias_names = set()
        for k, t in named_params:
            if "lora_" in k:
                to_return[k] = t
                bias_name = k.split("lora_")[0] + "bias"
                lora_bias_names.add(bias_name)
            elif "bias" in k:
                maybe_lora_bias[k] = t
        for k, t in maybe_lora_bias:
            if bias_name in lora_bias_names:
                to_return[bias_name] = t
    else:
        raise NotImplementedError
    to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()}
    return to_return


def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
    to_return = {k: t for k, t in named_params if "lora_" not in k}
    if require_grad_only:
        to_return = {k: t for k, t in to_return.items() if t.requires_grad}
    to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
    return to_return


def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
    to_return = {
        k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)
    }
    to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
    return to_return


def find_all_linear_names(model):
    cls = torch.nn.Linear
    lora_module_names = set()
    multimodal_keywords = ["mm_projector", "vision_tower", "vision_resampler"]
    for name, module in model.named_modules():
        if any(mm_keyword in name for mm_keyword in multimodal_keywords):
            continue
        if isinstance(module, cls):
            names = name.split(".")
            lora_module_names.add(names[0] if len(names) == 1 else names[-1])

    if "lm_head" in lora_module_names:  # needed for 16-bit
        lora_module_names.remove("lm_head")
    return list(lora_module_names)


def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str):
    """Collects the state dict and dump to disk."""

    if getattr(trainer.args, "tune_mm_mlp_adapter", False):
        # Only save Adapter
        keys_to_match = ["mm_projector"]
        if getattr(trainer.args, "use_im_start_end", False):
            keys_to_match.extend(["embed_tokens", "embed_in"])

        weight_to_save = get_mm_adapter_state_maybe_zero_3(
            trainer.model.named_parameters(), keys_to_match
        )
        trainer.model.config.save_pretrained(output_dir)

        current_folder = output_dir.split("/")[-1]
        parent_folder = os.path.dirname(output_dir)
        if trainer.args.local_rank == 0 or trainer.args.local_rank == -1:
            if current_folder.startswith("checkpoint-"):
                mm_projector_folder = os.path.join(parent_folder, "mm_projector")
                os.makedirs(mm_projector_folder, exist_ok=True)
                torch.save(
                    weight_to_save, os.path.join(mm_projector_folder, f"{current_folder}.bin")
                )
            else:
                torch.save(weight_to_save, os.path.join(output_dir, f"mm_projector.bin"))
        return

    if trainer.deepspeed:
        torch.cuda.synchronize()
        trainer.save_model(output_dir)
        return

    state_dict = trainer.model.state_dict()
    if trainer.args.should_save:
        cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
        del state_dict
        trainer._save(output_dir, state_dict=cpu_state_dict)  # noqa


def train():
    global local_rank

    parser = transformers.HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
    local_rank = training_args.local_rank
    compute_dtype = (
        torch.float16
        if training_args.fp16
        else (torch.bfloat16 if training_args.bf16 else torch.float32)
    )

    bnb_model_from_pretrained_args = {}
    if training_args.bits in [4, 8]:
        from transformers import BitsAndBytesConfig

        bnb_model_from_pretrained_args.update(
            dict(
                device_map={"": training_args.device},
                load_in_4bit=training_args.bits == 4,
                load_in_8bit=training_args.bits == 8,
                quantization_config=BitsAndBytesConfig(
                    load_in_4bit=training_args.bits == 4,
                    load_in_8bit=training_args.bits == 8,
                    llm_int8_skip_modules=["mm_projector"],
                    llm_int8_threshold=6.0,
                    llm_int8_has_fp16_weight=False,
                    bnb_4bit_compute_dtype=compute_dtype,
                    bnb_4bit_use_double_quant=training_args.double_quant,
                    bnb_4bit_quant_type=training_args.quant_type,  # {'fp4', 'nf4'}
                ),
            )
        )

    assert model_args.vision_tower is not None
    if model_args.model_type in {"mixtral-8x7b", "nemo", "qwen2p5_instruct", "qwen2p5_fo_instruct"}:
        tokenizer = transformers.AutoTokenizer.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=training_args.cache_dir,
            model_max_length=training_args.model_max_length,
            padding_side="right",
            use_fast=True,
        )

    if tokenizer.unk_token is not None and tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.unk_token

    if model_args.model_type == "llama3-8b":
        tokenizer.pad_token = tokenizer.eos_token

    if model_args.model_type == "mixtral-8x7b":
        torch_dtype = torch.float16 if training_args.fp16 else torch.bfloat16
        model = VITAMixtralForCausalLM.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=training_args.cache_dir,
            torch_dtype=torch_dtype,
            attn_implementation="flash_attention_2",
            **bnb_model_from_pretrained_args,
        )
    elif model_args.model_type == "nemo":
        torch_dtype = torch.float16 if training_args.fp16 else torch.bfloat16
        model = VITAMistralForCausalLM.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=training_args.cache_dir,
            torch_dtype=torch_dtype,
            attn_implementation="flash_attention_2",
            **bnb_model_from_pretrained_args,
        )
    elif model_args.model_type == "qwen2p5_instruct":
        torch_dtype = torch.float16 if training_args.fp16 else torch.bfloat16
        model = VITAQwen2ForCausalLM.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=training_args.cache_dir,
            torch_dtype=torch_dtype,
            attn_implementation="flash_attention_2",
            **bnb_model_from_pretrained_args,
        )
    elif model_args.model_type == "qwen2p5_fo_instruct":
        torch_dtype = torch.float16 if training_args.fp16 else torch.bfloat16
        model = VITAFOQwen2ForCausalLM.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=training_args.cache_dir,
            torch_dtype=torch_dtype,
            attn_implementation="flash_attention_2",
            **bnb_model_from_pretrained_args,
        )
    else:
        raise ValueError(f"Unknown Model Type {model_args.model_type}")

    model.config.use_cache = False

    if model_args.freeze_backbone:
        model.model.requires_grad_(False)

    if training_args.bits in [4, 8]:
        from peft import prepare_model_for_kbit_training

        model.config.torch_dtype = (
            torch.float32
            if training_args.fp16
            else (torch.bfloat16 if training_args.bf16 else torch.float32)
        )
        model = prepare_model_for_kbit_training(
            model, use_gradient_checkpointing=training_args.gradient_checkpointing
        )

    if training_args.gradient_checkpointing:
        if hasattr(model, "enable_input_require_grads"):
            model.enable_input_require_grads()
        else:

            def make_inputs_require_grad(module, input, output):
                output.requires_grad_(True)

            model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)

    if training_args.lora_enable:
        from peft import LoraConfig, get_peft_model

        lora_config = LoraConfig(
            r=training_args.lora_r,
            lora_alpha=training_args.lora_alpha,
            target_modules=find_all_linear_names(model),
            lora_dropout=training_args.lora_dropout,
            bias=training_args.lora_bias,
            task_type="CAUSAL_LM",
        )
        if training_args.bits == 16:
            if training_args.bf16:
                model.to(torch.bfloat16)
            if training_args.fp16:
                model.to(torch.float16)
        rank0_print("Adding LoRA adapters...")
        model = get_peft_model(model, lora_config)

    if model_args.version in conversation_lib.conv_templates:
        conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version]
    else:
        conversation_lib.default_conversation = conversation_lib.conv_templates["default"]

    model.get_model().initialize_vision_modules(model_args=model_args)

    model.config.freeze_audio_encoder = model_args.freeze_audio_encoder
    model.config.freeze_audio_encoder_adapter = model_args.freeze_audio_encoder_adapter
    model.config.audio_prompt_finetune = model_args.audio_prompt_finetune
    model.config.audio_prompt_num = model_args.audio_prompt_num
    model.get_model().initialize_audio_modules(model_args=model_args)

    vision_tower = model.get_vision_tower()
    vision_tower.to(
        dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device
    )

    audio_encoder = model.get_audio_encoder()
    audio_encoder.to(
        dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device
    )

    data_args.image_processor = vision_tower.image_processor
    data_args.audio_processor = audio_encoder.audio_processor

    model.config.image_aspect_ratio = data_args.image_aspect_ratio
    model.config.tokenizer_padding_side = tokenizer.padding_side
    model.config.tokenizer_model_max_length = tokenizer.model_max_length

    model.config.tune_mm_mlp_adapter = (
        training_args.tune_mm_mlp_adapter
    ) = model_args.tune_mm_mlp_adapter
    if model_args.tune_mm_mlp_adapter:
        model.requires_grad_(False)
        for p in model.get_model().mm_projector.parameters():
            p.requires_grad = True

    model.config.tune_audio_mlp_adapter = (
        training_args.tune_audio_mlp_adapter
    ) = model_args.tune_audio_mlp_adapter
    if model_args.tune_audio_mlp_adapter:
        model.requires_grad_(False)
        for p in model.model.audio_encoder.adpter.parameters():
            p.requires_grad = True

    model.config.audio_prompt_finetune = (
        training_args.audio_prompt_finetune
    ) = model_args.audio_prompt_finetune
    model.config.audio_state_predictor_tuning = (
        training_args.audio_state_predictor_tuning
    ) = model_args.audio_state_predictor_tuning
    if model_args.audio_prompt_finetune or model_args.audio_state_predictor_tuning:
        model.requires_grad_(False)
        if model_args.audio_prompt_finetune:
            for p in model.model.audio_encoder.prompt_embeddings.parameters():
                p.requires_grad = True        
        if model_args.audio_state_predictor_tuning:
            for p in model.predictor_head.parameters():
                p.requires_grad = True

    model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter
    if training_args.freeze_mm_mlp_adapter:
        for p in model.get_model().mm_projector.parameters():
            p.requires_grad = False

    if training_args.bits in [4, 8]:
        model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device)

    model.config.mm_projector_lr = training_args.mm_projector_lr

    model.config.use_s2 = model_args.use_s2

    model.config.unfreeze_vision_tower = (
        training_args.unfreeze_vision_tower
    ) = model_args.unfreeze_vision_tower
    if training_args.unfreeze_vision_tower:
        for p in model.get_model().vision_tower.parameters():
            p.requires_grad = True

    if training_args.bits in [4, 8]:
        from peft.tuners.lora import LoraLayer

        for name, module in model.named_modules():
            if isinstance(module, LoraLayer):
                if training_args.bf16:
                    module = module.to(torch.bfloat16)
            if "norm" in name:
                module = module.to(torch.float32)
            if "lm_head" in name or "embed_tokens" in name:
                if hasattr(module, "weight"):
                    if training_args.bf16 and module.weight.dtype == torch.float32:
                        module = module.to(torch.bfloat16)

    data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
    trainer = VITATrainer(model=model, tokenizer=tokenizer, args=training_args, **data_module)

    if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
        trainer.train(resume_from_checkpoint=True)
    else:
        trainer.train()
    trainer.save_state()

    model.config.use_cache = True

    if training_args.lora_enable:
        state_dict = get_peft_state_maybe_zero_3(model.named_parameters(), training_args.lora_bias)
        non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(model.named_parameters())
        if training_args.local_rank == 0 or training_args.local_rank == -1:
            model.config.save_pretrained(training_args.output_dir)
            model.save_pretrained(training_args.output_dir, state_dict=state_dict)
            torch.save(
                non_lora_state_dict,
                os.path.join(training_args.output_dir, "non_lora_trainables.bin"),
            )
    else:
        safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir)


if __name__ == "__main__":
    train()