VITA-1.5 / vita /model /vita_arch.py
lxysl's picture
upload vita-1.5 app.py
bc752b1
import math
from abc import ABC, abstractmethod
import torch
import torch.nn.functional as F
from vita.constants import AUDIO_TOKEN_INDEX, IGNORE_INDEX, IMAGE_TOKEN_INDEX
from .multimodal_encoder.builder import build_audio_encoder, build_vision_tower
from .multimodal_projector.builder import build_vision_projector
import numpy as np
class VITAMetaModel:
def __init__(self, config):
super(VITAMetaModel, self).__init__(config)
if hasattr(config, "mm_vision_tower"):
self.vision_tower = build_vision_tower(
config, delay_load=False#not getattr(config, "continuous_training", False)
)
if getattr(config, "continuous_training", False):
config.continuous_training = False
self.mm_projector = build_vision_projector(config)
if hasattr(config, "mm_audio_encoder"):
self.audio_encoder = build_audio_encoder(config)
def get_vision_tower(self):
vision_tower = getattr(self, "vision_tower", None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def get_audio_encoder(self):
audio_encoder = getattr(self, "audio_encoder", None)
return audio_encoder
def initialize_vision_modules(self, model_args):
vision_tower = model_args.vision_tower
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
self.config.mm_vision_tower = vision_tower
if self.get_vision_tower() is None:
vision_tower = build_vision_tower(model_args)
self.vision_tower = vision_tower
else:
vision_tower = self.vision_tower
#vision_tower.load_model()
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(model_args, "mm_projector_type")
self.config.mm_hidden_size = vision_tower.hidden_size
if getattr(self, "mm_projector", None) is None:
self.mm_projector = build_vision_projector(self.config)
else:
# In case it is frozen by LoRA
for p in self.mm_projector.parameters():
p.requires_grad = True
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location="cpu")
def get_w(weights, keyword):
return {k.split(keyword + ".")[1]: v for k, v in weights.items() if keyword in k}
self.mm_projector.load_state_dict(get_w(mm_projector_weights, "mm_projector"))
def initialize_audio_modules(self, model_args):
audio_encoder = model_args.audio_encoder
pretrain_audio_mlp_adapter = model_args.pretrain_audio_mlp_adapter
setattr(self.config, "mm_audio_encoder", audio_encoder)
audio_encoder = build_audio_encoder(self.config)
self.audio_encoder = audio_encoder
load_audio_ckpt_from_mllm = True
if load_audio_ckpt_from_mllm:
from safetensors.torch import load_file
import os
audio_weights = {}
for file_name in os.listdir(model_args.model_name_or_path):
if file_name.endswith('safetensors'):
audio_weights.update(
{k[20:]: v for k, v in load_file(os.path.join(model_args.model_name_or_path, file_name)).items() if
k.startswith('model.audio_encoder.')})
self.audio_encoder.load_state_dict(audio_weights, strict=True)
#load_audio_ckpt = True
#if self.get_audio_encoder() is None or load_audio_ckpt or model_args.audio_prompt_finetune:
# audio_encoder = build_audio_encoder(self.config)
# self.audio_encoder = audio_encoder
#load_audio_prompt_weight = False #True
#if load_audio_prompt_weight:
# from safetensors.torch import load_file
# import os
# audio_weights = {}
# for file_name in os.listdir(model_args.model_name_or_path):
# if file_name.endswith('safetensors'):
# audio_weights.update(
# {k[38:]: v for k, v in load_file(os.path.join(model_args.model_name_or_path, file_name)).items() if
# k.startswith('model.audio_encoder.prompt_embeddings')})
# self.audio_encoder.prompt_embeddings.load_state_dict(audio_weights, strict=True)
#checkpoint = torch.load(model_args.audio_encoder + "/final.pt", map_location="cpu")
#model_dict = self.audio_encoder.state_dict()
#for key in model_dict.keys():
# if key in checkpoint.keys():
# if model_dict[key].shape == checkpoint[key].shape:
# model_dict[key] = checkpoint[key]
# else:
# print(
# "Key {} has different shape, {} VS {}".format(
# key, model_dict[key].shape, checkpoint[key].shape
# )
# )
# else:
# print("Key {} has not in resume model".format(key))
#self.audio_encoder.load_state_dict(model_dict)
if pretrain_audio_mlp_adapter is not None:
audio_projector_weights = torch.load(pretrain_audio_mlp_adapter, map_location="cpu")
def get_w(weights, keyword):
return {k.split(keyword + ".")[1]: v for k, v in weights.items() if keyword in k}
self.audio_encoder.adpter.load_state_dict(get_w(audio_projector_weights, "audio_encoder.adpter"))
class VITAMetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def get_audio_encoder(self):
return self.get_model().get_audio_encoder()
def pool_feats(self, x, out_size):
ndim = x.ndim
if ndim == 2:
x = x.unsqueeze(0)
b, num_tokens, c = x.shape
h = int(math.sqrt(num_tokens))
x = x.permute(0, 2, 1).reshape(b, -1, h, h)
x = F.interpolate(x, size=out_size, mode='bilinear', align_corners=False)
num_tokens = x.shape[2] * x.shape[3] # Recalculate the number of tokens after pooling
x = x.reshape(b, c, num_tokens).permute(0, 2, 1)
if ndim == 2:
x = x.squeeze(0)
return x
def encode_images(self, images):
image_features = self.get_model().get_vision_tower()(images)
#image_features = self.pool_feats(image_features)
image_features = self.get_model().mm_projector(image_features)
return image_features
def encode_images_frameCat(self, images):
image_features = self.get_model().get_vision_tower()(images)
assert len(image_features) % 5 == 0
concatenated_features = []
for i in range(0, len(image_features), 5):
tensors_to_concat = [image_features[j] for j in range(i, i + 5)]
concatenated_tensor = torch.cat(tensors_to_concat, dim=-1)
concatenated_features.append(concatenated_tensor)
concatenated_features = torch.stack(concatenated_features)
image_features = concatenated_features
image_features = self.get_model().mm_projector(image_features)
return image_features
def slow_fast_pooling0(self, temp_img_feats):
num_frame = len(temp_img_feats)
if num_frame <= 30:
slow_token_num = max([e for e in [256, 225, 196, 169] if e <= 5200/num_frame])
fast_token_num = slow_token_num
elif num_frame <= 45:
slow_token_num = 169
fast_token_num = 81
elif num_frame <= 64:
slow_token_num = 169
fast_token_num = 49
else:
raise ValueError("The number of frames is too large!")
if num_frame <= 30:
num_slow = num_frame
else:
num_slow = int((5200 - fast_token_num * num_frame) / (slow_token_num - fast_token_num))
num_fast = num_frame - num_slow
slow_index = list(np.linspace(0, num_frame, num=num_slow, dtype=int))
new_img_feats = []
for i, feat in enumerate(temp_img_feats):
if i in slow_index:
sqrt_len = int(math.sqrt(slow_token_num))
else:
sqrt_len = int(math.sqrt(fast_token_num))
if sqrt_len != 16:
feat = self.pool_feats(feat, out_size=(sqrt_len, sqrt_len))
new_img_feats.append(feat)
return new_img_feats
def slow_fast_pooling1(self, temp_img_feats):
num_frame = len(temp_img_feats)
if num_frame <= 28:
slow_token_num = max([e for e in [256, 225, 196, 169, 144] if e <= 4096/num_frame])
fast_token_num = slow_token_num
elif num_frame <= 40:
slow_token_num = 144
fast_token_num = 81
elif num_frame <= 64:
slow_token_num = 144
fast_token_num = 49
else:
raise ValueError("The number of frames is too large!")
if num_frame <= 28:
num_slow = num_frame
else:
num_slow = int((4096 - fast_token_num * num_frame) / (slow_token_num - fast_token_num))
num_fast = num_frame - num_slow
slow_index = list(np.linspace(0, num_frame, num=num_slow, dtype=int))
new_img_feats = []
for i, feat in enumerate(temp_img_feats):
if i in slow_index:
sqrt_len = int(math.sqrt(slow_token_num))
else:
sqrt_len = int(math.sqrt(fast_token_num))
if sqrt_len != 16:
feat = self.pool_feats(feat, out_size=(sqrt_len, sqrt_len))
new_img_feats.append(feat)
return new_img_feats
def slow_fast_pooling(self, temp_img_feats):
num_frame = len(temp_img_feats)
slow_token_num = 144
fast_token_num = 49
slow_index = list(range(0, num_frame, 4))
new_img_feats = []
for i, feat in enumerate(temp_img_feats):
if i in slow_index:
sqrt_len = int(math.sqrt(slow_token_num))
else:
sqrt_len = int(math.sqrt(fast_token_num))
if sqrt_len != 16:
feat = self.pool_feats(feat, out_size=(sqrt_len, sqrt_len))
new_img_feats.append(feat)
return new_img_feats
def slow_fast_pooling3(self, temp_img_feats):
num_frame = len(temp_img_feats)
slow_token_num = 144
fast_token_num = 36
slow_index = list(range(0, num_frame, 16))
new_img_feats = []
for i, feat in enumerate(temp_img_feats):
if i in slow_index:
sqrt_len = int(math.sqrt(slow_token_num))
else:
sqrt_len = int(math.sqrt(fast_token_num))
if sqrt_len != 16:
feat = self.pool_feats(feat, out_size=(sqrt_len, sqrt_len))
new_img_feats.append(feat)
return new_img_feats
def slow_fast(self, image_features, sf_masks):
new_image_features = []
temp_img_feats = [] # 初始化 temp_img_feats 在循环外
for i, img_feat in enumerate(image_features):
if i == 0 or sf_masks[i] != sf_masks[i-1]:
if temp_img_feats: # 如果 temp_img_feats 不为空,则添加到 new_image_features
if sf_masks[i-1] > 0:
temp_img_feats = self.slow_fast_pooling(temp_img_feats)
new_image_features.append(temp_img_feats)
temp_img_feats = [img_feat] # 重新初始化 temp_img_feats
else:
temp_img_feats.append(img_feat)
if temp_img_feats: # 处理最后一个子列表
if sf_masks[-1] > 0:
temp_img_feats = self.slow_fast_pooling(temp_img_feats)
new_image_features.append(temp_img_feats)
output_features = []
for e in new_image_features:
output_features += e
return output_features
def prepare_inputs_labels_for_multimodal(
self, input_ids, position_ids, attention_mask, past_key_values, labels, images, audios, sf_masks, shared_v_pid_stride=None
):
vision_tower = self.get_vision_tower()
if vision_tower is None or images is None or input_ids.shape[1] == 1:
if (
past_key_values is not None
and vision_tower is not None
and images is not None
and input_ids.shape[1] == 1
):
target_shape = past_key_values[-1][-1].shape[-2] + 1
attention_mask = torch.cat(
(
attention_mask,
torch.ones(
(attention_mask.shape[0], target_shape - attention_mask.shape[1]),
dtype=attention_mask.dtype,
device=attention_mask.device,
),
),
dim=1,
)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
return input_ids, position_ids, attention_mask, past_key_values, None, labels
if type(images) is list or images.ndim == 5:
concat_images = torch.cat([image for image in images], dim=0)
image_features = self.encode_images(concat_images)
split_sizes = [image.shape[0] for image in images]
image_features = torch.split(image_features, split_sizes, dim=0)
image_features = [x.flatten(0, 1).to(self.device) for x in image_features]
else:
image_features = self.encode_images(images).to(self.device)
image_features = [e for e in image_features]
if sf_masks is not None:
assert len(image_features) == len(sf_masks)
image_features = self.slow_fast(image_features, sf_masks)
audio_encoder = self.get_audio_encoder()
if audios is not None:
audio_features = audio_encoder(audios["audios"], audios["lengths"])
state_labels = audios.get("state_labels", None)
lengths_for_llm = audios["lengths_for_llm"]
if state_labels is not None:
assert len(audio_features["inputs_embeds"]) == len(state_labels) == len(lengths_for_llm)
else:
audio_features, state_labels, lengths_for_llm = None, None, None
# Let's just add dummy tensors if they do not exist,
# it is a headache to deal with None all the time.
# But it is not ideal, and if you have a better idea,
# please open an issue / submit a PR, thanks.
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(
0, input_ids.shape[1], dtype=torch.long, device=input_ids.device
)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- TODO: double check
input_ids = [
cur_input_ids[cur_attention_mask]
for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
]
labels = [
cur_labels[cur_attention_mask]
for cur_labels, cur_attention_mask in zip(labels, attention_mask)
]
new_input_embeds = []
new_labels = []
v_start_end = []
cur_image_idx = 0
cur_audio_idx = 0
assert (
sum([(cur == IMAGE_TOKEN_INDEX).sum() for cur in input_ids])
+ sum([(IMAGE_TOKEN_INDEX not in cur) for cur in input_ids])
== len(image_features)
), input_ids
assert (
sum([(cur == AUDIO_TOKEN_INDEX).sum() for cur in input_ids])
+ sum([(AUDIO_TOKEN_INDEX not in cur) for cur in input_ids])
== audio_features["inputs_embeds"].shape[0]
), input_ids
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
num_audio_frames = (cur_input_ids == AUDIO_TOKEN_INDEX).sum()
if num_images == 0 and num_audio_frames == 0:
cur_image_features = image_features[cur_image_idx]
cur_audio_features = audio_features["inputs_embeds"][cur_audio_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = torch.cat(
[cur_input_embeds_1, cur_image_features[0:0], cur_audio_features[0:0]], dim=0
)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
cur_image_idx += 1
cur_audio_idx += 1
continue
image_audio_token_indices = (
[-1]
+ torch.where(
(cur_input_ids == IMAGE_TOKEN_INDEX) | (cur_input_ids == AUDIO_TOKEN_INDEX)
)[0].tolist()
+ [cur_input_ids.shape[0]]
)
cur_input_ids_noim_noau = []
cur_labels = labels[batch_idx]
cur_labels_noim_noau = []
for i in range(len(image_audio_token_indices) - 1):
cur_input_ids_noim_noau.append(
cur_input_ids[
image_audio_token_indices[i] + 1 : image_audio_token_indices[i + 1]
]
)
cur_labels_noim_noau.append(
cur_labels[image_audio_token_indices[i] + 1 : image_audio_token_indices[i + 1]]
)
split_sizes = [x.shape[0] for x in cur_labels_noim_noau]
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim_noau))
cur_input_embeds_no_im_no_au = torch.split(cur_input_embeds, split_sizes, dim=0)
cur_new_input_embeds = []
cur_new_labels = []
cur_v_start_end = []
for i in range(num_images + num_audio_frames + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im_no_au[i])
cur_new_labels.append(cur_labels_noim_noau[i])
if i < num_images + num_audio_frames:
if cur_input_ids[image_audio_token_indices[i + 1]] == IMAGE_TOKEN_INDEX:
cur_image_features = image_features[cur_image_idx]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(
torch.full(
(cur_image_features.shape[0],),
IGNORE_INDEX,
device=cur_labels.device,
dtype=cur_labels.dtype,
)
)
if shared_v_pid_stride:
start = sum([x.shape[0] for x in cur_new_labels[:-1]])
end = start + cur_new_labels[-1].shape[0]
cur_v_start_end.append((start, end))
elif cur_input_ids[image_audio_token_indices[i + 1]] == AUDIO_TOKEN_INDEX:
cur_lengths_for_llm = lengths_for_llm[cur_audio_idx]
cur_audio_features = audio_features["inputs_embeds"][cur_audio_idx]
if getattr(self.config, "audio_prompt_num", None):#self.config.audio_prompt_num:
cur_lengths_for_llm = cur_lengths_for_llm + self.config.audio_prompt_num
cur_audio_features = cur_audio_features[:cur_lengths_for_llm]
if state_labels is not None:
cur_state_label = state_labels[cur_audio_idx]
cur_audio_idx += 1
cur_new_input_embeds.append(cur_audio_features)
cur_new_labels.append(
torch.full(
(cur_audio_features.shape[0],),
IGNORE_INDEX,
device=cur_labels.device,
dtype=cur_labels.dtype,
)
)
if state_labels is not None:
cur_new_labels[-1][-1] = cur_state_label
else:
raise ValueError
if num_images != 0 and num_audio_frames == 0:
cur_audio_features = audio_features["inputs_embeds"][cur_audio_idx]
cur_audio_idx += 1
cur_new_input_embeds.append(cur_audio_features[0:0])
elif num_images == 0 and num_audio_frames != 0:
cur_image_features = image_features[cur_image_idx]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features[0:0])
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
if shared_v_pid_stride:
cur_v_start_end = merge_consecutive_tuples(cur_v_start_end)
v_start_end.append(cur_v_start_end)
assert cur_image_idx == len(image_features)
assert cur_audio_idx == audio_features["inputs_embeds"].shape[0]
if state_labels is not None:
assert cur_audio_idx == len(state_labels)
if state_labels is not None:
assert (
sum([(cur == AUDIO_TOKEN_INDEX).sum() for cur in input_ids])
== sum([(cur == -101).sum() for cur in new_labels]) + sum([(cur == -102).sum() for cur in new_labels])
), (input_ids, sum([(cur == AUDIO_TOKEN_INDEX).sum() for cur in input_ids]), sum([(cur == -101).sum() for cur in new_labels]), sum([(cur == -102).sum() for cur in new_labels]), new_labels.shape)
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(self.config, "tokenizer_model_max_length", None)
if tokenizer_model_max_length is not None:
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full(
(batch_size, max_len),
IGNORE_INDEX,
dtype=new_labels[0].dtype,
device=new_labels[0].device,
)
attention_mask = torch.zeros(
(batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device
)
position_ids = torch.zeros(
(batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device
)
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, "tokenizer_padding_side", "right") == "left":
new_input_embeds_padded.append(
torch.cat(
(
torch.zeros(
(max_len - cur_len, cur_new_embed.shape[1]),
dtype=cur_new_embed.dtype,
device=cur_new_embed.device,
),
cur_new_embed,
),
dim=0,
)
)
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(
0, cur_len, dtype=position_ids.dtype, device=position_ids.device
)
else:
new_input_embeds_padded.append(
torch.cat(
(
cur_new_embed,
torch.zeros(
(max_len - cur_len, cur_new_embed.shape[1]),
dtype=cur_new_embed.dtype,
device=cur_new_embed.device,
),
),
dim=0,
)
)
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
if shared_v_pid_stride is None:
position_ids[i, :cur_len] = torch.arange(
0, cur_len, dtype=position_ids.dtype, device=position_ids.device
)
else:
cur_v_start_end = v_start_end[i]
cur_shared_position_ids = make_shared_position_ids(cur_v_start_end, cur_len, shared_v_pid_stride)
position_ids[i, :cur_len] = cur_shared_position_ids
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None and shared_v_pid_stride is None:
position_ids = None
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
def merge_consecutive_tuples(tuples_list):
if not tuples_list:
return []
# 首先对列表按照起点索引进行排序
sorted_tuples = sorted(tuples_list, key=lambda x: x[0])
# 初始化合并后的列表
merged_tuples = [sorted_tuples[0]]
for current_start, current_end in sorted_tuples[1:]:
last_merged_start, last_merged_end = merged_tuples[-1]
if current_start <= last_merged_end: # 如果当前元组的起点小于等于上一个合并元组的终点
# 合并这两个元组
new_start, new_end = merged_tuples[-1][0], max(last_merged_end, current_end)
merged_tuples[-1] = (new_start, new_end)
else:
# 如果当前元组不连续,直接添加到合并后的列表中
merged_tuples.append((current_start, current_end))
return merged_tuples
def make_shared_position_ids(cur_v_start_end, cur_len, shared_v_pid_stride):
position_ids = torch.tensor([1.0] * cur_len)
for start, end in cur_v_start_end:
position_ids[start:end] = 1/shared_v_pid_stride
v_mod = (end - start) % shared_v_pid_stride
if v_mod != 0:
position_ids[end-v_mod:end] = 1 / v_mod
position_ids = position_ids.cumsum(dim=0)
position_ids = torch.ceil(position_ids).long() - 1
return position_ids