Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,691 Bytes
bc752b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 |
import math
from abc import ABC, abstractmethod
import torch
import torch.nn.functional as F
from vita.constants import AUDIO_TOKEN_INDEX, IGNORE_INDEX, IMAGE_TOKEN_INDEX
from .multimodal_encoder.builder import build_audio_encoder, build_vision_tower
from .multimodal_projector.builder import build_vision_projector
import numpy as np
class VITAMetaModel:
def __init__(self, config):
super(VITAMetaModel, self).__init__(config)
if hasattr(config, "mm_vision_tower"):
self.vision_tower = build_vision_tower(
config, delay_load=False#not getattr(config, "continuous_training", False)
)
if getattr(config, "continuous_training", False):
config.continuous_training = False
self.mm_projector = build_vision_projector(config)
if hasattr(config, "mm_audio_encoder"):
self.audio_encoder = build_audio_encoder(config)
def get_vision_tower(self):
vision_tower = getattr(self, "vision_tower", None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def get_audio_encoder(self):
audio_encoder = getattr(self, "audio_encoder", None)
return audio_encoder
def initialize_vision_modules(self, model_args):
vision_tower = model_args.vision_tower
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
self.config.mm_vision_tower = vision_tower
if self.get_vision_tower() is None:
vision_tower = build_vision_tower(model_args)
self.vision_tower = vision_tower
else:
vision_tower = self.vision_tower
#vision_tower.load_model()
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(model_args, "mm_projector_type")
self.config.mm_hidden_size = vision_tower.hidden_size
if getattr(self, "mm_projector", None) is None:
self.mm_projector = build_vision_projector(self.config)
else:
# In case it is frozen by LoRA
for p in self.mm_projector.parameters():
p.requires_grad = True
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location="cpu")
def get_w(weights, keyword):
return {k.split(keyword + ".")[1]: v for k, v in weights.items() if keyword in k}
self.mm_projector.load_state_dict(get_w(mm_projector_weights, "mm_projector"))
def initialize_audio_modules(self, model_args):
audio_encoder = model_args.audio_encoder
pretrain_audio_mlp_adapter = model_args.pretrain_audio_mlp_adapter
setattr(self.config, "mm_audio_encoder", audio_encoder)
audio_encoder = build_audio_encoder(self.config)
self.audio_encoder = audio_encoder
load_audio_ckpt_from_mllm = True
if load_audio_ckpt_from_mllm:
from safetensors.torch import load_file
import os
audio_weights = {}
for file_name in os.listdir(model_args.model_name_or_path):
if file_name.endswith('safetensors'):
audio_weights.update(
{k[20:]: v for k, v in load_file(os.path.join(model_args.model_name_or_path, file_name)).items() if
k.startswith('model.audio_encoder.')})
self.audio_encoder.load_state_dict(audio_weights, strict=True)
#load_audio_ckpt = True
#if self.get_audio_encoder() is None or load_audio_ckpt or model_args.audio_prompt_finetune:
# audio_encoder = build_audio_encoder(self.config)
# self.audio_encoder = audio_encoder
#load_audio_prompt_weight = False #True
#if load_audio_prompt_weight:
# from safetensors.torch import load_file
# import os
# audio_weights = {}
# for file_name in os.listdir(model_args.model_name_or_path):
# if file_name.endswith('safetensors'):
# audio_weights.update(
# {k[38:]: v for k, v in load_file(os.path.join(model_args.model_name_or_path, file_name)).items() if
# k.startswith('model.audio_encoder.prompt_embeddings')})
# self.audio_encoder.prompt_embeddings.load_state_dict(audio_weights, strict=True)
#checkpoint = torch.load(model_args.audio_encoder + "/final.pt", map_location="cpu")
#model_dict = self.audio_encoder.state_dict()
#for key in model_dict.keys():
# if key in checkpoint.keys():
# if model_dict[key].shape == checkpoint[key].shape:
# model_dict[key] = checkpoint[key]
# else:
# print(
# "Key {} has different shape, {} VS {}".format(
# key, model_dict[key].shape, checkpoint[key].shape
# )
# )
# else:
# print("Key {} has not in resume model".format(key))
#self.audio_encoder.load_state_dict(model_dict)
if pretrain_audio_mlp_adapter is not None:
audio_projector_weights = torch.load(pretrain_audio_mlp_adapter, map_location="cpu")
def get_w(weights, keyword):
return {k.split(keyword + ".")[1]: v for k, v in weights.items() if keyword in k}
self.audio_encoder.adpter.load_state_dict(get_w(audio_projector_weights, "audio_encoder.adpter"))
class VITAMetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def get_audio_encoder(self):
return self.get_model().get_audio_encoder()
def pool_feats(self, x, out_size):
ndim = x.ndim
if ndim == 2:
x = x.unsqueeze(0)
b, num_tokens, c = x.shape
h = int(math.sqrt(num_tokens))
x = x.permute(0, 2, 1).reshape(b, -1, h, h)
x = F.interpolate(x, size=out_size, mode='bilinear', align_corners=False)
num_tokens = x.shape[2] * x.shape[3] # Recalculate the number of tokens after pooling
x = x.reshape(b, c, num_tokens).permute(0, 2, 1)
if ndim == 2:
x = x.squeeze(0)
return x
def encode_images(self, images):
image_features = self.get_model().get_vision_tower()(images)
#image_features = self.pool_feats(image_features)
image_features = self.get_model().mm_projector(image_features)
return image_features
def encode_images_frameCat(self, images):
image_features = self.get_model().get_vision_tower()(images)
assert len(image_features) % 5 == 0
concatenated_features = []
for i in range(0, len(image_features), 5):
tensors_to_concat = [image_features[j] for j in range(i, i + 5)]
concatenated_tensor = torch.cat(tensors_to_concat, dim=-1)
concatenated_features.append(concatenated_tensor)
concatenated_features = torch.stack(concatenated_features)
image_features = concatenated_features
image_features = self.get_model().mm_projector(image_features)
return image_features
def slow_fast_pooling0(self, temp_img_feats):
num_frame = len(temp_img_feats)
if num_frame <= 30:
slow_token_num = max([e for e in [256, 225, 196, 169] if e <= 5200/num_frame])
fast_token_num = slow_token_num
elif num_frame <= 45:
slow_token_num = 169
fast_token_num = 81
elif num_frame <= 64:
slow_token_num = 169
fast_token_num = 49
else:
raise ValueError("The number of frames is too large!")
if num_frame <= 30:
num_slow = num_frame
else:
num_slow = int((5200 - fast_token_num * num_frame) / (slow_token_num - fast_token_num))
num_fast = num_frame - num_slow
slow_index = list(np.linspace(0, num_frame, num=num_slow, dtype=int))
new_img_feats = []
for i, feat in enumerate(temp_img_feats):
if i in slow_index:
sqrt_len = int(math.sqrt(slow_token_num))
else:
sqrt_len = int(math.sqrt(fast_token_num))
if sqrt_len != 16:
feat = self.pool_feats(feat, out_size=(sqrt_len, sqrt_len))
new_img_feats.append(feat)
return new_img_feats
def slow_fast_pooling1(self, temp_img_feats):
num_frame = len(temp_img_feats)
if num_frame <= 28:
slow_token_num = max([e for e in [256, 225, 196, 169, 144] if e <= 4096/num_frame])
fast_token_num = slow_token_num
elif num_frame <= 40:
slow_token_num = 144
fast_token_num = 81
elif num_frame <= 64:
slow_token_num = 144
fast_token_num = 49
else:
raise ValueError("The number of frames is too large!")
if num_frame <= 28:
num_slow = num_frame
else:
num_slow = int((4096 - fast_token_num * num_frame) / (slow_token_num - fast_token_num))
num_fast = num_frame - num_slow
slow_index = list(np.linspace(0, num_frame, num=num_slow, dtype=int))
new_img_feats = []
for i, feat in enumerate(temp_img_feats):
if i in slow_index:
sqrt_len = int(math.sqrt(slow_token_num))
else:
sqrt_len = int(math.sqrt(fast_token_num))
if sqrt_len != 16:
feat = self.pool_feats(feat, out_size=(sqrt_len, sqrt_len))
new_img_feats.append(feat)
return new_img_feats
def slow_fast_pooling(self, temp_img_feats):
num_frame = len(temp_img_feats)
slow_token_num = 144
fast_token_num = 49
slow_index = list(range(0, num_frame, 4))
new_img_feats = []
for i, feat in enumerate(temp_img_feats):
if i in slow_index:
sqrt_len = int(math.sqrt(slow_token_num))
else:
sqrt_len = int(math.sqrt(fast_token_num))
if sqrt_len != 16:
feat = self.pool_feats(feat, out_size=(sqrt_len, sqrt_len))
new_img_feats.append(feat)
return new_img_feats
def slow_fast_pooling3(self, temp_img_feats):
num_frame = len(temp_img_feats)
slow_token_num = 144
fast_token_num = 36
slow_index = list(range(0, num_frame, 16))
new_img_feats = []
for i, feat in enumerate(temp_img_feats):
if i in slow_index:
sqrt_len = int(math.sqrt(slow_token_num))
else:
sqrt_len = int(math.sqrt(fast_token_num))
if sqrt_len != 16:
feat = self.pool_feats(feat, out_size=(sqrt_len, sqrt_len))
new_img_feats.append(feat)
return new_img_feats
def slow_fast(self, image_features, sf_masks):
new_image_features = []
temp_img_feats = [] # 初始化 temp_img_feats 在循环外
for i, img_feat in enumerate(image_features):
if i == 0 or sf_masks[i] != sf_masks[i-1]:
if temp_img_feats: # 如果 temp_img_feats 不为空,则添加到 new_image_features
if sf_masks[i-1] > 0:
temp_img_feats = self.slow_fast_pooling(temp_img_feats)
new_image_features.append(temp_img_feats)
temp_img_feats = [img_feat] # 重新初始化 temp_img_feats
else:
temp_img_feats.append(img_feat)
if temp_img_feats: # 处理最后一个子列表
if sf_masks[-1] > 0:
temp_img_feats = self.slow_fast_pooling(temp_img_feats)
new_image_features.append(temp_img_feats)
output_features = []
for e in new_image_features:
output_features += e
return output_features
def prepare_inputs_labels_for_multimodal(
self, input_ids, position_ids, attention_mask, past_key_values, labels, images, audios, sf_masks, shared_v_pid_stride=None
):
vision_tower = self.get_vision_tower()
if vision_tower is None or images is None or input_ids.shape[1] == 1:
if (
past_key_values is not None
and vision_tower is not None
and images is not None
and input_ids.shape[1] == 1
):
target_shape = past_key_values[-1][-1].shape[-2] + 1
attention_mask = torch.cat(
(
attention_mask,
torch.ones(
(attention_mask.shape[0], target_shape - attention_mask.shape[1]),
dtype=attention_mask.dtype,
device=attention_mask.device,
),
),
dim=1,
)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
return input_ids, position_ids, attention_mask, past_key_values, None, labels
if type(images) is list or images.ndim == 5:
concat_images = torch.cat([image for image in images], dim=0)
image_features = self.encode_images(concat_images)
split_sizes = [image.shape[0] for image in images]
image_features = torch.split(image_features, split_sizes, dim=0)
image_features = [x.flatten(0, 1).to(self.device) for x in image_features]
else:
image_features = self.encode_images(images).to(self.device)
image_features = [e for e in image_features]
if sf_masks is not None:
assert len(image_features) == len(sf_masks)
image_features = self.slow_fast(image_features, sf_masks)
audio_encoder = self.get_audio_encoder()
if audios is not None:
audio_features = audio_encoder(audios["audios"], audios["lengths"])
state_labels = audios.get("state_labels", None)
lengths_for_llm = audios["lengths_for_llm"]
if state_labels is not None:
assert len(audio_features["inputs_embeds"]) == len(state_labels) == len(lengths_for_llm)
else:
audio_features, state_labels, lengths_for_llm = None, None, None
# Let's just add dummy tensors if they do not exist,
# it is a headache to deal with None all the time.
# But it is not ideal, and if you have a better idea,
# please open an issue / submit a PR, thanks.
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(
0, input_ids.shape[1], dtype=torch.long, device=input_ids.device
)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- TODO: double check
input_ids = [
cur_input_ids[cur_attention_mask]
for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
]
labels = [
cur_labels[cur_attention_mask]
for cur_labels, cur_attention_mask in zip(labels, attention_mask)
]
new_input_embeds = []
new_labels = []
v_start_end = []
cur_image_idx = 0
cur_audio_idx = 0
assert (
sum([(cur == IMAGE_TOKEN_INDEX).sum() for cur in input_ids])
+ sum([(IMAGE_TOKEN_INDEX not in cur) for cur in input_ids])
== len(image_features)
), input_ids
assert (
sum([(cur == AUDIO_TOKEN_INDEX).sum() for cur in input_ids])
+ sum([(AUDIO_TOKEN_INDEX not in cur) for cur in input_ids])
== audio_features["inputs_embeds"].shape[0]
), input_ids
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
num_audio_frames = (cur_input_ids == AUDIO_TOKEN_INDEX).sum()
if num_images == 0 and num_audio_frames == 0:
cur_image_features = image_features[cur_image_idx]
cur_audio_features = audio_features["inputs_embeds"][cur_audio_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = torch.cat(
[cur_input_embeds_1, cur_image_features[0:0], cur_audio_features[0:0]], dim=0
)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
cur_image_idx += 1
cur_audio_idx += 1
continue
image_audio_token_indices = (
[-1]
+ torch.where(
(cur_input_ids == IMAGE_TOKEN_INDEX) | (cur_input_ids == AUDIO_TOKEN_INDEX)
)[0].tolist()
+ [cur_input_ids.shape[0]]
)
cur_input_ids_noim_noau = []
cur_labels = labels[batch_idx]
cur_labels_noim_noau = []
for i in range(len(image_audio_token_indices) - 1):
cur_input_ids_noim_noau.append(
cur_input_ids[
image_audio_token_indices[i] + 1 : image_audio_token_indices[i + 1]
]
)
cur_labels_noim_noau.append(
cur_labels[image_audio_token_indices[i] + 1 : image_audio_token_indices[i + 1]]
)
split_sizes = [x.shape[0] for x in cur_labels_noim_noau]
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim_noau))
cur_input_embeds_no_im_no_au = torch.split(cur_input_embeds, split_sizes, dim=0)
cur_new_input_embeds = []
cur_new_labels = []
cur_v_start_end = []
for i in range(num_images + num_audio_frames + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im_no_au[i])
cur_new_labels.append(cur_labels_noim_noau[i])
if i < num_images + num_audio_frames:
if cur_input_ids[image_audio_token_indices[i + 1]] == IMAGE_TOKEN_INDEX:
cur_image_features = image_features[cur_image_idx]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(
torch.full(
(cur_image_features.shape[0],),
IGNORE_INDEX,
device=cur_labels.device,
dtype=cur_labels.dtype,
)
)
if shared_v_pid_stride:
start = sum([x.shape[0] for x in cur_new_labels[:-1]])
end = start + cur_new_labels[-1].shape[0]
cur_v_start_end.append((start, end))
elif cur_input_ids[image_audio_token_indices[i + 1]] == AUDIO_TOKEN_INDEX:
cur_lengths_for_llm = lengths_for_llm[cur_audio_idx]
cur_audio_features = audio_features["inputs_embeds"][cur_audio_idx]
if getattr(self.config, "audio_prompt_num", None):#self.config.audio_prompt_num:
cur_lengths_for_llm = cur_lengths_for_llm + self.config.audio_prompt_num
cur_audio_features = cur_audio_features[:cur_lengths_for_llm]
if state_labels is not None:
cur_state_label = state_labels[cur_audio_idx]
cur_audio_idx += 1
cur_new_input_embeds.append(cur_audio_features)
cur_new_labels.append(
torch.full(
(cur_audio_features.shape[0],),
IGNORE_INDEX,
device=cur_labels.device,
dtype=cur_labels.dtype,
)
)
if state_labels is not None:
cur_new_labels[-1][-1] = cur_state_label
else:
raise ValueError
if num_images != 0 and num_audio_frames == 0:
cur_audio_features = audio_features["inputs_embeds"][cur_audio_idx]
cur_audio_idx += 1
cur_new_input_embeds.append(cur_audio_features[0:0])
elif num_images == 0 and num_audio_frames != 0:
cur_image_features = image_features[cur_image_idx]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features[0:0])
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
if shared_v_pid_stride:
cur_v_start_end = merge_consecutive_tuples(cur_v_start_end)
v_start_end.append(cur_v_start_end)
assert cur_image_idx == len(image_features)
assert cur_audio_idx == audio_features["inputs_embeds"].shape[0]
if state_labels is not None:
assert cur_audio_idx == len(state_labels)
if state_labels is not None:
assert (
sum([(cur == AUDIO_TOKEN_INDEX).sum() for cur in input_ids])
== sum([(cur == -101).sum() for cur in new_labels]) + sum([(cur == -102).sum() for cur in new_labels])
), (input_ids, sum([(cur == AUDIO_TOKEN_INDEX).sum() for cur in input_ids]), sum([(cur == -101).sum() for cur in new_labels]), sum([(cur == -102).sum() for cur in new_labels]), new_labels.shape)
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(self.config, "tokenizer_model_max_length", None)
if tokenizer_model_max_length is not None:
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full(
(batch_size, max_len),
IGNORE_INDEX,
dtype=new_labels[0].dtype,
device=new_labels[0].device,
)
attention_mask = torch.zeros(
(batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device
)
position_ids = torch.zeros(
(batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device
)
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, "tokenizer_padding_side", "right") == "left":
new_input_embeds_padded.append(
torch.cat(
(
torch.zeros(
(max_len - cur_len, cur_new_embed.shape[1]),
dtype=cur_new_embed.dtype,
device=cur_new_embed.device,
),
cur_new_embed,
),
dim=0,
)
)
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(
0, cur_len, dtype=position_ids.dtype, device=position_ids.device
)
else:
new_input_embeds_padded.append(
torch.cat(
(
cur_new_embed,
torch.zeros(
(max_len - cur_len, cur_new_embed.shape[1]),
dtype=cur_new_embed.dtype,
device=cur_new_embed.device,
),
),
dim=0,
)
)
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
if shared_v_pid_stride is None:
position_ids[i, :cur_len] = torch.arange(
0, cur_len, dtype=position_ids.dtype, device=position_ids.device
)
else:
cur_v_start_end = v_start_end[i]
cur_shared_position_ids = make_shared_position_ids(cur_v_start_end, cur_len, shared_v_pid_stride)
position_ids[i, :cur_len] = cur_shared_position_ids
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None and shared_v_pid_stride is None:
position_ids = None
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
def merge_consecutive_tuples(tuples_list):
if not tuples_list:
return []
# 首先对列表按照起点索引进行排序
sorted_tuples = sorted(tuples_list, key=lambda x: x[0])
# 初始化合并后的列表
merged_tuples = [sorted_tuples[0]]
for current_start, current_end in sorted_tuples[1:]:
last_merged_start, last_merged_end = merged_tuples[-1]
if current_start <= last_merged_end: # 如果当前元组的起点小于等于上一个合并元组的终点
# 合并这两个元组
new_start, new_end = merged_tuples[-1][0], max(last_merged_end, current_end)
merged_tuples[-1] = (new_start, new_end)
else:
# 如果当前元组不连续,直接添加到合并后的列表中
merged_tuples.append((current_start, current_end))
return merged_tuples
def make_shared_position_ids(cur_v_start_end, cur_len, shared_v_pid_stride):
position_ids = torch.tensor([1.0] * cur_len)
for start, end in cur_v_start_end:
position_ids[start:end] = 1/shared_v_pid_stride
v_mod = (end - start) % shared_v_pid_stride
if v_mod != 0:
position_ids[end-v_mod:end] = 1 / v_mod
position_ids = position_ids.cumsum(dim=0)
position_ids = torch.ceil(position_ids).long() - 1
return position_ids
|