File size: 27,691 Bytes
bc752b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
import math
from abc import ABC, abstractmethod

import torch
import torch.nn.functional as F

from vita.constants import AUDIO_TOKEN_INDEX, IGNORE_INDEX, IMAGE_TOKEN_INDEX

from .multimodal_encoder.builder import build_audio_encoder, build_vision_tower
from .multimodal_projector.builder import build_vision_projector
import numpy as np

class VITAMetaModel:
    def __init__(self, config):
        super(VITAMetaModel, self).__init__(config)

        if hasattr(config, "mm_vision_tower"):
            self.vision_tower = build_vision_tower(
                config, delay_load=False#not getattr(config, "continuous_training", False)
            )
            if getattr(config, "continuous_training", False):
                config.continuous_training = False
            self.mm_projector = build_vision_projector(config)

        if hasattr(config, "mm_audio_encoder"):
            self.audio_encoder = build_audio_encoder(config)

    def get_vision_tower(self):
        vision_tower = getattr(self, "vision_tower", None)
        if type(vision_tower) is list:
            vision_tower = vision_tower[0]
        return vision_tower

    def get_audio_encoder(self):
        audio_encoder = getattr(self, "audio_encoder", None)
        return audio_encoder

    def initialize_vision_modules(self, model_args):
        vision_tower = model_args.vision_tower

        pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter

        self.config.mm_vision_tower = vision_tower

        if self.get_vision_tower() is None:
            vision_tower = build_vision_tower(model_args)
            self.vision_tower = vision_tower
        else:
            vision_tower = self.vision_tower
            #vision_tower.load_model()

        self.config.use_mm_proj = True
        self.config.mm_projector_type = getattr(model_args, "mm_projector_type")
        self.config.mm_hidden_size = vision_tower.hidden_size

        if getattr(self, "mm_projector", None) is None:
            self.mm_projector = build_vision_projector(self.config)
        else:
            # In case it is frozen by LoRA
            for p in self.mm_projector.parameters():
                p.requires_grad = True

        if pretrain_mm_mlp_adapter is not None:
            mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location="cpu")

            def get_w(weights, keyword):
                return {k.split(keyword + ".")[1]: v for k, v in weights.items() if keyword in k}

            self.mm_projector.load_state_dict(get_w(mm_projector_weights, "mm_projector"))

    def initialize_audio_modules(self, model_args):
        audio_encoder = model_args.audio_encoder

        pretrain_audio_mlp_adapter = model_args.pretrain_audio_mlp_adapter

        setattr(self.config, "mm_audio_encoder", audio_encoder)

        audio_encoder = build_audio_encoder(self.config)
        self.audio_encoder = audio_encoder

        load_audio_ckpt_from_mllm = True
        if load_audio_ckpt_from_mllm:
            from safetensors.torch import load_file
            import os
            audio_weights = {}
            for file_name in os.listdir(model_args.model_name_or_path):
                if file_name.endswith('safetensors'):
                    audio_weights.update(
                        {k[20:]: v for k, v in load_file(os.path.join(model_args.model_name_or_path, file_name)).items() if
                            k.startswith('model.audio_encoder.')})
            self.audio_encoder.load_state_dict(audio_weights, strict=True) 

        #load_audio_ckpt = True
        #if self.get_audio_encoder() is None or load_audio_ckpt or model_args.audio_prompt_finetune:
        #    audio_encoder = build_audio_encoder(self.config)
        #    self.audio_encoder = audio_encoder

        #load_audio_prompt_weight = False #True
        #if load_audio_prompt_weight:
        #    from safetensors.torch import load_file
        #    import os
        #    audio_weights = {}
        #    for file_name in os.listdir(model_args.model_name_or_path):
        #        if file_name.endswith('safetensors'):
        #            audio_weights.update(
        #                {k[38:]: v for k, v in load_file(os.path.join(model_args.model_name_or_path, file_name)).items() if
        #                    k.startswith('model.audio_encoder.prompt_embeddings')})
        #    self.audio_encoder.prompt_embeddings.load_state_dict(audio_weights, strict=True)

        #checkpoint = torch.load(model_args.audio_encoder + "/final.pt", map_location="cpu")
        #model_dict = self.audio_encoder.state_dict()
        #for key in model_dict.keys():
        #    if key in checkpoint.keys():
        #        if model_dict[key].shape == checkpoint[key].shape:
        #            model_dict[key] = checkpoint[key]
        #        else:
        #            print(
        #                "Key {} has different shape, {} VS {}".format(
        #                    key, model_dict[key].shape, checkpoint[key].shape
        #                )
        #            )
        #    else:
        #        print("Key {} has not in resume model".format(key))
        #self.audio_encoder.load_state_dict(model_dict)

        if pretrain_audio_mlp_adapter is not None:
            audio_projector_weights = torch.load(pretrain_audio_mlp_adapter, map_location="cpu")

            def get_w(weights, keyword):
                return {k.split(keyword + ".")[1]: v for k, v in weights.items() if keyword in k}

            self.audio_encoder.adpter.load_state_dict(get_w(audio_projector_weights, "audio_encoder.adpter"))


class VITAMetaForCausalLM(ABC):
    @abstractmethod
    def get_model(self):
        pass

    def get_vision_tower(self):
        return self.get_model().get_vision_tower()

    def get_audio_encoder(self):
        return self.get_model().get_audio_encoder()

    def pool_feats(self, x, out_size):
        ndim = x.ndim
        if ndim == 2:
            x = x.unsqueeze(0)
        b, num_tokens, c = x.shape
        h = int(math.sqrt(num_tokens))
        x = x.permute(0, 2, 1).reshape(b, -1, h, h)
        x = F.interpolate(x, size=out_size, mode='bilinear', align_corners=False)
        num_tokens = x.shape[2] * x.shape[3]  # Recalculate the number of tokens after pooling
        x = x.reshape(b, c, num_tokens).permute(0, 2, 1)
        if ndim == 2:
            x = x.squeeze(0)
        return x

    def encode_images(self, images):
        image_features = self.get_model().get_vision_tower()(images)
        #image_features = self.pool_feats(image_features)
        image_features = self.get_model().mm_projector(image_features)
        return image_features

    def encode_images_frameCat(self, images):
        image_features = self.get_model().get_vision_tower()(images)
        assert len(image_features) % 5 == 0

        concatenated_features = []
        for i in range(0, len(image_features), 5):
            tensors_to_concat = [image_features[j] for j in range(i, i + 5)]
            concatenated_tensor = torch.cat(tensors_to_concat, dim=-1)
            concatenated_features.append(concatenated_tensor)
        concatenated_features = torch.stack(concatenated_features)
        image_features = concatenated_features

        image_features = self.get_model().mm_projector(image_features)
        return image_features

    def slow_fast_pooling0(self, temp_img_feats):
        num_frame = len(temp_img_feats)
        if num_frame <= 30:
            slow_token_num = max([e for e in [256, 225, 196, 169] if e <= 5200/num_frame]) 
            fast_token_num = slow_token_num
        elif num_frame <= 45:
            slow_token_num = 169
            fast_token_num = 81
        elif num_frame <= 64:
            slow_token_num = 169
            fast_token_num = 49
        else:
            raise ValueError("The number of frames is too large!")
        
        if num_frame <= 30:
            num_slow = num_frame
        else:
            num_slow = int((5200 - fast_token_num * num_frame) / (slow_token_num - fast_token_num))
        num_fast = num_frame - num_slow
        slow_index = list(np.linspace(0, num_frame, num=num_slow, dtype=int))

        new_img_feats = []
        for i, feat in enumerate(temp_img_feats):
            if i in slow_index:
                sqrt_len = int(math.sqrt(slow_token_num))
            else:
                sqrt_len = int(math.sqrt(fast_token_num))
            if sqrt_len != 16:
                feat = self.pool_feats(feat, out_size=(sqrt_len, sqrt_len))
            new_img_feats.append(feat)

        return new_img_feats

    def slow_fast_pooling1(self, temp_img_feats):
        num_frame = len(temp_img_feats)
        if num_frame <= 28:
            slow_token_num = max([e for e in [256, 225, 196, 169, 144] if e <= 4096/num_frame]) 
            fast_token_num = slow_token_num
        elif num_frame <= 40:
            slow_token_num = 144
            fast_token_num = 81
        elif num_frame <= 64:
            slow_token_num = 144
            fast_token_num = 49
        else:
            raise ValueError("The number of frames is too large!")
        
        if num_frame <= 28:
            num_slow = num_frame
        else:
            num_slow = int((4096 - fast_token_num * num_frame) / (slow_token_num - fast_token_num))
        num_fast = num_frame - num_slow
        slow_index = list(np.linspace(0, num_frame, num=num_slow, dtype=int))

        new_img_feats = []
        for i, feat in enumerate(temp_img_feats):
            if i in slow_index:
                sqrt_len = int(math.sqrt(slow_token_num))
            else:
                sqrt_len = int(math.sqrt(fast_token_num))
            if sqrt_len != 16:
                feat = self.pool_feats(feat, out_size=(sqrt_len, sqrt_len))
            new_img_feats.append(feat)

        return new_img_feats

    def slow_fast_pooling(self, temp_img_feats):
        num_frame = len(temp_img_feats)
        slow_token_num = 144
        fast_token_num = 49
        
        slow_index = list(range(0, num_frame, 4))

        new_img_feats = []
        for i, feat in enumerate(temp_img_feats):
            if i in slow_index:
                sqrt_len = int(math.sqrt(slow_token_num))
            else:
                sqrt_len = int(math.sqrt(fast_token_num))
            if sqrt_len != 16:
                feat = self.pool_feats(feat, out_size=(sqrt_len, sqrt_len))
            new_img_feats.append(feat)

        return new_img_feats

    def slow_fast_pooling3(self, temp_img_feats):
        num_frame = len(temp_img_feats)
        slow_token_num = 144
        fast_token_num = 36
        
        slow_index = list(range(0, num_frame, 16))

        new_img_feats = []
        for i, feat in enumerate(temp_img_feats):
            if i in slow_index:
                sqrt_len = int(math.sqrt(slow_token_num))
            else:
                sqrt_len = int(math.sqrt(fast_token_num))
            if sqrt_len != 16:
                feat = self.pool_feats(feat, out_size=(sqrt_len, sqrt_len))
            new_img_feats.append(feat)

        return new_img_feats

    def slow_fast(self, image_features, sf_masks):
        new_image_features = []
        temp_img_feats = []  # 初始化 temp_img_feats 在循环外
        for i, img_feat in enumerate(image_features):
            if i == 0 or sf_masks[i] != sf_masks[i-1]:
                if temp_img_feats:  # 如果 temp_img_feats 不为空,则添加到 new_image_features
                    if sf_masks[i-1] > 0:
                        temp_img_feats = self.slow_fast_pooling(temp_img_feats)
                    new_image_features.append(temp_img_feats)
                temp_img_feats = [img_feat]  # 重新初始化 temp_img_feats
            else:
                temp_img_feats.append(img_feat)
        if temp_img_feats:  # 处理最后一个子列表
            if sf_masks[-1] > 0:
                temp_img_feats = self.slow_fast_pooling(temp_img_feats)
            new_image_features.append(temp_img_feats)
        
        output_features = []
        for e in new_image_features:
            output_features += e

        return output_features

    def prepare_inputs_labels_for_multimodal(
        self, input_ids, position_ids, attention_mask, past_key_values, labels, images, audios, sf_masks, shared_v_pid_stride=None
    ):
        vision_tower = self.get_vision_tower()
        if vision_tower is None or images is None or input_ids.shape[1] == 1:
            if (
                past_key_values is not None
                and vision_tower is not None
                and images is not None
                and input_ids.shape[1] == 1
            ):
                target_shape = past_key_values[-1][-1].shape[-2] + 1
                attention_mask = torch.cat(
                    (
                        attention_mask,
                        torch.ones(
                            (attention_mask.shape[0], target_shape - attention_mask.shape[1]),
                            dtype=attention_mask.dtype,
                            device=attention_mask.device,
                        ),
                    ),
                    dim=1,
                )
                position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
            return input_ids, position_ids, attention_mask, past_key_values, None, labels

        if type(images) is list or images.ndim == 5:
            concat_images = torch.cat([image for image in images], dim=0)
            image_features = self.encode_images(concat_images)
            split_sizes = [image.shape[0] for image in images]
            image_features = torch.split(image_features, split_sizes, dim=0)
            image_features = [x.flatten(0, 1).to(self.device) for x in image_features]
        else:
            image_features = self.encode_images(images).to(self.device)

        image_features = [e for e in image_features]
        if sf_masks is not None:
            assert len(image_features) == len(sf_masks)
            image_features = self.slow_fast(image_features, sf_masks) 

        audio_encoder = self.get_audio_encoder()
        if audios is not None:
            audio_features = audio_encoder(audios["audios"], audios["lengths"])
            state_labels = audios.get("state_labels", None)
            lengths_for_llm = audios["lengths_for_llm"]
            if state_labels is not None:
                assert len(audio_features["inputs_embeds"]) == len(state_labels) == len(lengths_for_llm)
        else:
            audio_features, state_labels, lengths_for_llm = None, None, None        

        # Let's just add dummy tensors if they do not exist,
        # it is a headache to deal with None all the time.
        # But it is not ideal, and if you have a better idea,
        # please open an issue / submit a PR, thanks.
        _labels = labels
        _position_ids = position_ids
        _attention_mask = attention_mask
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
        else:
            attention_mask = attention_mask.bool()
        if position_ids is None:
            position_ids = torch.arange(
                0, input_ids.shape[1], dtype=torch.long, device=input_ids.device
            )
        if labels is None:
            labels = torch.full_like(input_ids, IGNORE_INDEX)

        # remove the padding using attention_mask -- TODO: double check
        input_ids = [
            cur_input_ids[cur_attention_mask]
            for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)
        ]
        labels = [
            cur_labels[cur_attention_mask]
            for cur_labels, cur_attention_mask in zip(labels, attention_mask)
        ]

        new_input_embeds = []
        new_labels = []
        v_start_end = []
        cur_image_idx = 0
        cur_audio_idx = 0
        assert (
            sum([(cur == IMAGE_TOKEN_INDEX).sum() for cur in input_ids])
            + sum([(IMAGE_TOKEN_INDEX not in cur) for cur in input_ids])
            == len(image_features)
        ), input_ids
        assert (
            sum([(cur == AUDIO_TOKEN_INDEX).sum() for cur in input_ids])
            + sum([(AUDIO_TOKEN_INDEX not in cur) for cur in input_ids])
            == audio_features["inputs_embeds"].shape[0]
        ), input_ids

        for batch_idx, cur_input_ids in enumerate(input_ids):
            num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
            num_audio_frames = (cur_input_ids == AUDIO_TOKEN_INDEX).sum()
            if num_images == 0 and num_audio_frames == 0:
                cur_image_features = image_features[cur_image_idx]
                cur_audio_features = audio_features["inputs_embeds"][cur_audio_idx]
                cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
                cur_input_embeds = torch.cat(
                    [cur_input_embeds_1, cur_image_features[0:0], cur_audio_features[0:0]], dim=0
                )
                new_input_embeds.append(cur_input_embeds)
                new_labels.append(labels[batch_idx])
                cur_image_idx += 1
                cur_audio_idx += 1
                continue

            image_audio_token_indices = (
                [-1]
                + torch.where(
                    (cur_input_ids == IMAGE_TOKEN_INDEX) | (cur_input_ids == AUDIO_TOKEN_INDEX)
                )[0].tolist()
                + [cur_input_ids.shape[0]]
            )
            cur_input_ids_noim_noau = []
            cur_labels = labels[batch_idx]
            cur_labels_noim_noau = []
            for i in range(len(image_audio_token_indices) - 1):
                cur_input_ids_noim_noau.append(
                    cur_input_ids[
                        image_audio_token_indices[i] + 1 : image_audio_token_indices[i + 1]
                    ]
                )
                cur_labels_noim_noau.append(
                    cur_labels[image_audio_token_indices[i] + 1 : image_audio_token_indices[i + 1]]
                )

            split_sizes = [x.shape[0] for x in cur_labels_noim_noau]
            cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim_noau))
            cur_input_embeds_no_im_no_au = torch.split(cur_input_embeds, split_sizes, dim=0)
            cur_new_input_embeds = []
            cur_new_labels = []
            cur_v_start_end = []
            for i in range(num_images + num_audio_frames + 1):
                cur_new_input_embeds.append(cur_input_embeds_no_im_no_au[i])
                cur_new_labels.append(cur_labels_noim_noau[i])
                if i < num_images + num_audio_frames:
                    if cur_input_ids[image_audio_token_indices[i + 1]] == IMAGE_TOKEN_INDEX:
                        cur_image_features = image_features[cur_image_idx]
                        cur_image_idx += 1
                        cur_new_input_embeds.append(cur_image_features)
                        cur_new_labels.append(
                            torch.full(
                                (cur_image_features.shape[0],),
                                IGNORE_INDEX,
                                device=cur_labels.device,
                                dtype=cur_labels.dtype,
                            )
                        )
                        if shared_v_pid_stride:
                            start = sum([x.shape[0] for x in cur_new_labels[:-1]])
                            end = start + cur_new_labels[-1].shape[0]
                            cur_v_start_end.append((start, end))
                    elif cur_input_ids[image_audio_token_indices[i + 1]] == AUDIO_TOKEN_INDEX:
                        cur_lengths_for_llm = lengths_for_llm[cur_audio_idx]
                        cur_audio_features = audio_features["inputs_embeds"][cur_audio_idx]
                        if getattr(self.config, "audio_prompt_num", None):#self.config.audio_prompt_num:
                            cur_lengths_for_llm = cur_lengths_for_llm + self.config.audio_prompt_num
                        cur_audio_features = cur_audio_features[:cur_lengths_for_llm]
                        if state_labels is not None:
                            cur_state_label = state_labels[cur_audio_idx]
                        cur_audio_idx += 1
                        cur_new_input_embeds.append(cur_audio_features)
                        cur_new_labels.append(
                            torch.full(
                                (cur_audio_features.shape[0],),
                                IGNORE_INDEX,
                                device=cur_labels.device,
                                dtype=cur_labels.dtype,
                            )
                        )
                        if state_labels is not None:
                            cur_new_labels[-1][-1] = cur_state_label
                    else:
                        raise ValueError

            if num_images != 0 and num_audio_frames == 0:
                cur_audio_features = audio_features["inputs_embeds"][cur_audio_idx]
                cur_audio_idx += 1
                cur_new_input_embeds.append(cur_audio_features[0:0])
            elif num_images == 0 and num_audio_frames != 0:
                cur_image_features = image_features[cur_image_idx]
                cur_image_idx += 1
                cur_new_input_embeds.append(cur_image_features[0:0])
            cur_new_input_embeds = torch.cat(cur_new_input_embeds)
            cur_new_labels = torch.cat(cur_new_labels)

            new_input_embeds.append(cur_new_input_embeds)
            new_labels.append(cur_new_labels)

            if shared_v_pid_stride:
                cur_v_start_end = merge_consecutive_tuples(cur_v_start_end)
                v_start_end.append(cur_v_start_end)

        assert cur_image_idx == len(image_features)
        assert cur_audio_idx == audio_features["inputs_embeds"].shape[0]
        if state_labels is not None:
            assert cur_audio_idx == len(state_labels)
        if state_labels is not None:
            assert (
                sum([(cur == AUDIO_TOKEN_INDEX).sum() for cur in input_ids])
                == sum([(cur == -101).sum() for cur in new_labels]) + sum([(cur == -102).sum() for cur in new_labels])
            ), (input_ids, sum([(cur == AUDIO_TOKEN_INDEX).sum() for cur in input_ids]),  sum([(cur == -101).sum() for cur in new_labels]), sum([(cur == -102).sum() for cur in new_labels]), new_labels.shape)

        # Truncate sequences to max length as image embeddings can make the sequence longer
        tokenizer_model_max_length = getattr(self.config, "tokenizer_model_max_length", None)
        if tokenizer_model_max_length is not None:
            new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
            new_labels = [x[:tokenizer_model_max_length] for x in new_labels]

        # Combine them
        max_len = max(x.shape[0] for x in new_input_embeds)
        batch_size = len(new_input_embeds)

        new_input_embeds_padded = []
        new_labels_padded = torch.full(
            (batch_size, max_len),
            IGNORE_INDEX,
            dtype=new_labels[0].dtype,
            device=new_labels[0].device,
        )
        attention_mask = torch.zeros(
            (batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device
        )
        position_ids = torch.zeros(
            (batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device
        )

        for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
            cur_len = cur_new_embed.shape[0]
            if getattr(self.config, "tokenizer_padding_side", "right") == "left":
                new_input_embeds_padded.append(
                    torch.cat(
                        (
                            torch.zeros(
                                (max_len - cur_len, cur_new_embed.shape[1]),
                                dtype=cur_new_embed.dtype,
                                device=cur_new_embed.device,
                            ),
                            cur_new_embed,
                        ),
                        dim=0,
                    )
                )
                if cur_len > 0:
                    new_labels_padded[i, -cur_len:] = cur_new_labels
                    attention_mask[i, -cur_len:] = True
                    position_ids[i, -cur_len:] = torch.arange(
                        0, cur_len, dtype=position_ids.dtype, device=position_ids.device
                    )
            else:
                new_input_embeds_padded.append(
                    torch.cat(
                        (
                            cur_new_embed,
                            torch.zeros(
                                (max_len - cur_len, cur_new_embed.shape[1]),
                                dtype=cur_new_embed.dtype,
                                device=cur_new_embed.device,
                            ),
                        ),
                        dim=0,
                    )
                )
                if cur_len > 0:
                    new_labels_padded[i, :cur_len] = cur_new_labels
                    attention_mask[i, :cur_len] = True
                    if shared_v_pid_stride is None:
                        position_ids[i, :cur_len] = torch.arange(
                            0, cur_len, dtype=position_ids.dtype, device=position_ids.device
                        )
                    else:
                        cur_v_start_end = v_start_end[i]
                        cur_shared_position_ids = make_shared_position_ids(cur_v_start_end, cur_len, shared_v_pid_stride)
                        position_ids[i, :cur_len] = cur_shared_position_ids

        new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)

        if _labels is None:
            new_labels = None
        else:
            new_labels = new_labels_padded

        if _attention_mask is None:
            attention_mask = None
        else:
            attention_mask = attention_mask.to(dtype=_attention_mask.dtype)

        if _position_ids is None and shared_v_pid_stride is None:
            position_ids = None

        return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels


def merge_consecutive_tuples(tuples_list):
    if not tuples_list:
        return []

    # 首先对列表按照起点索引进行排序
    sorted_tuples = sorted(tuples_list, key=lambda x: x[0])
    
    # 初始化合并后的列表
    merged_tuples = [sorted_tuples[0]]
    
    for current_start, current_end in sorted_tuples[1:]:
        last_merged_start, last_merged_end = merged_tuples[-1]
        if current_start <= last_merged_end:  # 如果当前元组的起点小于等于上一个合并元组的终点
            # 合并这两个元组
            new_start, new_end = merged_tuples[-1][0], max(last_merged_end, current_end)
            merged_tuples[-1] = (new_start, new_end)
        else:
            # 如果当前元组不连续,直接添加到合并后的列表中
            merged_tuples.append((current_start, current_end))
    
    return merged_tuples


def make_shared_position_ids(cur_v_start_end, cur_len, shared_v_pid_stride):
    position_ids = torch.tensor([1.0] * cur_len)

    for start, end in cur_v_start_end:
        position_ids[start:end] = 1/shared_v_pid_stride
        v_mod = (end - start) % shared_v_pid_stride
        if v_mod != 0:
            position_ids[end-v_mod:end] = 1 / v_mod
    position_ids = position_ids.cumsum(dim=0)
    position_ids = torch.ceil(position_ids).long() - 1

    return position_ids