VITA-1.5 / app.py
lxysl's picture
update model.generate
8301b1c
import torch
import os
import argparse
import numpy as np
import copy
import gradio as gr
import re
import torchaudio
import io
import cv2
import math
import spaces
from numba import jit
from huggingface_hub import snapshot_download
from vita.constants import DEFAULT_AUDIO_TOKEN, DEFAULT_IMAGE_TOKEN, MAX_IMAGE_LENGTH, MIN_IMAGE_LENGTH, IMAGE_TOKEN_INDEX, AUDIO_TOKEN_INDEX
from vita.conversation import conv_templates, SeparatorStyle
from vita.util.mm_utils import tokenizer_image_token, tokenizer_image_audio_token
from PIL import Image
from decord import VideoReader, cpu
from vita.model.builder import load_pretrained_model
from vita.model.vita_tts.decoder.llm2tts import llm2TTS
from vita.model.language_model.vita_qwen2 import VITAQwen2Config, VITAQwen2ForCausalLM
decoder_topk = 2
codec_chunk_size = 40
codec_padding_size = 10
PUNCTUATION = "!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘'‛""„‟…‧﹏."
MODEL_NAME = "VITA-MLLM/VITA-1.5"
model_path = snapshot_download(MODEL_NAME, local_dir="VITA_ckpt")
tokenizer, model, feature_extractor, context_len = load_pretrained_model(
model_path, model_base=None, model_name="VITA-1.5", model_type="qwen2p5_instruct"
)
llm_embedding = model.get_input_embeddings().cuda()
tts = llm2TTS(os.path.join(model_path, 'vita_tts_ckpt/'))
@jit
def float_to_int16(audio: np.ndarray) -> np.ndarray:
am = int(math.ceil(float(np.abs(audio).max())) * 32768)
am = 32767 * 32768 // am
return np.multiply(audio, am).astype(np.int16)
def remove_special_characters(input_str):
# Remove special tokens
special_tokens = ['☞', '☟', '☜', '<unk>', '<|im_end|>']
for token in special_tokens:
input_str = input_str.replace(token, '')
return input_str
def replace_equation(sentence):
special_notations = {
"sin": " sine ",
"cos": " cosine ",
"tan": " tangent ",
"cot": " cotangent ",
"sec": " secant ",
"csc": " cosecant ",
"log": " logarithm ",
"exp": "e^",
"sqrt": "根号 ",
"abs": "绝对值 ",
}
special_operators = {
"+": "加",
"-": "减",
"*": "乘",
"/": "除",
"=": "等于",
'!=': '不等于',
'>': '大于',
'<': '小于',
'>=': '大于等于',
'<=': '小于等于',
}
greek_letters = {
"α": "alpha ",
"β": "beta ",
"γ": "gamma ",
"δ": "delta ",
"ε": "epsilon ",
"ζ": "zeta ",
"η": "eta ",
"θ": "theta ",
"ι": "iota ",
"κ": "kappa ",
"λ": "lambda ",
"μ": "mu ",
"ν": "nu ",
"ξ": "xi ",
"ο": "omicron ",
"π": "派 ",
"ρ": "rho ",
"σ": "sigma ",
"τ": "tau ",
"υ": "upsilon ",
"φ": "phi ",
"χ": "chi ",
"ψ": "psi ",
"ω": "omega "
}
sentence = sentence.replace('**', ' ')
sentence = re.sub(r'(?<![\d)])-(\d+)', r'负\1', sentence)
for key in special_notations:
sentence = sentence.replace(key, special_notations[key])
for key in special_operators:
sentence = sentence.replace(key, special_operators[key])
for key in greek_letters:
sentence = sentence.replace(key, greek_letters[key])
sentence = re.sub(r'\(?(\d+)\)?\((\d+)\)', r'\1乘\2', sentence)
sentence = re.sub(r'\(?(\w+)\)?\^\(?(\w+)\)?', r'\1的\2次方', sentence)
return sentence
def is_video(file_path):
video_extensions = {'.mp4', '.avi', '.mov', '.mkv', '.flv', '.wmv', '.webm'}
_, ext = os.path.splitext(file_path)
return ext.lower() in video_extensions
def is_image(file_path):
image_extensions = {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff'}
_, ext = os.path.splitext(file_path)
return ext.lower() in image_extensions
def is_wav(file_path):
wav_extensions = {'.wav'}
_, ext = os.path.splitext(file_path)
return ext.lower() in wav_extensions
def load_model_embemding(model_path):
config_path = os.path.join(model_path, 'origin_config.json')
config = VITAQwen2Config.from_pretrained(config_path)
model = VITAQwen2ForCausalLM.from_pretrained(model_path, config=config, low_cpu_mem_usage=True)
embedding = model.get_input_embeddings()
del model
return embedding
def split_into_sentences(text):
sentence_endings = re.compile(r'[,。?\n!?、,?.!]')
sentences = sentence_endings.split(text)
return [sentence.strip() for sentence in sentences if sentence.strip()]
def convert_webm_to_mp4(input_file, output_file):
try:
cap = cv2.VideoCapture(input_file)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_file, fourcc, 20.0, (int(cap.get(3)), int(cap.get(4))))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
out.write(frame)
cap.release()
out.release()
except Exception as e:
print(f"Error: {e}")
raise
def _get_rawvideo_dec(video_path, max_frames=MAX_IMAGE_LENGTH, min_frames=MIN_IMAGE_LENGTH, video_framerate=1, s=None, e=None):
if s is None or e is None:
start_time, end_time = None, None
else:
start_time = int(s)
end_time = int(e)
start_time = max(start_time, 0)
end_time = max(end_time, 0)
if start_time > end_time:
start_time, end_time = end_time, start_time
elif start_time == end_time:
end_time = start_time + 1
if os.path.exists(video_path):
vreader = VideoReader(video_path, ctx=cpu(0))
else:
raise FileNotFoundError
fps = vreader.get_avg_fps()
f_start = 0 if start_time is None else int(start_time * fps)
f_end = int(min(1000000000 if end_time is None else end_time * fps, len(vreader) - 1))
num_frames = f_end - f_start + 1
if num_frames > 0:
sample_fps = int(video_framerate)
t_stride = int(round(float(fps) / sample_fps))
all_pos = list(range(f_start, f_end + 1, t_stride))
if len(all_pos) > max_frames:
sample_pos = [all_pos[_] for _ in np.linspace(0, len(all_pos) - 1, num=max_frames, dtype=int)]
elif len(all_pos) < min_frames:
sample_pos = [all_pos[_] for _ in np.linspace(0, len(all_pos) - 1, num=min_frames, dtype=int)]
else:
sample_pos = all_pos
patch_images = [Image.fromarray(f).convert("RGB") for f in vreader.get_batch(sample_pos).asnumpy()]
return patch_images, len(patch_images)
else:
print(f"video path: {video_path} error.")
def _parse_text(text):
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = "<br></code></pre>"
else:
if i > 0 and count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "&lt;")
line = line.replace(">", "&gt;")
line = line.replace(" ", "&nbsp;")
line = line.replace("*", "&ast;")
line = line.replace("_", "&lowbar;")
line = line.replace("-", "&#45;")
line = line.replace(".", "&#46;")
line = line.replace("!", "&#33;")
line = line.replace("(", "&#40;")
line = line.replace(")", "&#41;")
line = line.replace("$", "&#36;")
lines[i] = "<br>" + line
return "".join(lines)
@spaces.GPU
def predict(_chatbot, task_history):
chat_query = task_history[-1][0]
print(task_history)
conv_mode = "qwen2p5_instruct"
conv = conv_templates[conv_mode].copy()
all_audio_path = []
all_visual_tensor = []
qs = ''
input_mode = 'lang'
for i, (q, a) in enumerate(task_history):
if isinstance(q, (tuple, list)):
if is_image(q[0]):
images = [Image.open(q[0]).convert("RGB")]
all_visual_tensor.extend(images)
input_mode = 'image'
qs += DEFAULT_IMAGE_TOKEN * len(images) + '\n'
elif is_video(q[0]):
video_frames, slice_len = _get_rawvideo_dec(q[0])
all_visual_tensor.extend(video_frames)
input_mode = 'video'
qs += DEFAULT_IMAGE_TOKEN * slice_len + '\n'
elif is_wav(q[0]):
if a is not None and a.startswith('☜'):
continue
else:
all_audio_path.append(q[0])
new_q = qs + DEFAULT_AUDIO_TOKEN
qs = ''
conv.append_message(conv.roles[0], new_q)
conv.append_message(conv.roles[1], a)
else:
new_q = qs + q
qs = ''
conv.append_message(conv.roles[0], new_q)
conv.append_message(conv.roles[1], a)
prompt = conv.get_prompt(input_mode)
if all_audio_path != []:
input_ids = tokenizer_image_audio_token(
prompt, tokenizer,
image_token_index=IMAGE_TOKEN_INDEX,
audio_token_index=AUDIO_TOKEN_INDEX
)
audio_list = []
for single_audio_path in all_audio_path:
try:
audio, original_sr = torchaudio.load(single_audio_path)
target_sr = 16000
if original_sr != target_sr:
resampler = torchaudio.transforms.Resample(orig_freq=original_sr, new_freq=target_sr)
audio = resampler(audio)
audio_features = feature_extractor(audio, sampling_rate=target_sr, return_tensors="pt")["input_features"]
audio_list.append(audio_features.squeeze(0))
except Exception as e:
print(f"Error processing {single_audio_path}: {e}")
else:
input_ids = tokenizer_image_token(
prompt, tokenizer,
image_token_index=IMAGE_TOKEN_INDEX
)
if all_visual_tensor == [] and all_audio_path == []:
datapromt = {
"prompt_token_ids": input_ids,
}
elif all_visual_tensor != [] and all_audio_path == []:
datapromt = {
"prompt_token_ids": input_ids,
"multi_modal_data": {
"image": all_visual_tensor
},
}
elif all_visual_tensor == [] and all_audio_path != []:
datapromt = {
"prompt_token_ids": input_ids,
"multi_modal_data": {
"audio": audio_list
},
}
else:
datapromt = {
"prompt_token_ids": input_ids,
"multi_modal_data": {
"image": all_visual_tensor,
"audio": audio_list
},
}
print(datapromt)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=all_visual_tensor if all_visual_tensor else None,
audios=audio_list if audio_list else None,
do_sample=False,
temperature=0.01,
top_p=None,
num_beams=1,
output_scores=True,
return_dict_in_generate=True,
max_new_tokens=1024,
use_cache=True,
)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=False)[0]
outputs = outputs.strip()
task_history[-1] = (chat_query, outputs)
remove_special_characters_output = remove_special_characters(outputs)
_chatbot[-1] = (chat_query, _parse_text(remove_special_characters_output))
print("query", chat_query)
print("task_history", task_history)
print(_chatbot)
print("answer: ", outputs)
yield _chatbot
def add_text(history, task_history, text):
task_text = text
if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:
task_text = text[:-1]
history = history + [(_parse_text(text), None)]
task_history = task_history + [(task_text, None)]
return history, task_history, ""
def add_file(history, task_history, file):
history = history + [((file.name,), None)]
task_history = task_history + [((file.name,), None)]
return history, task_history
def add_audio(history, task_history, file):
print(file)
if file is None:
return history, task_history
history = history + [((file,), None)]
task_history = task_history + [((file,), None)]
return history, task_history
def add_video(history, task_history, file):
print(file)
if file is None:
return history, task_history
new_file_name = file.replace(".webm",".mp4")
if file.endswith(".webm"):
convert_webm_to_mp4(file, new_file_name)
task_history = task_history + [((new_file_name,), None)]
return history, task_history
def reset_user_input():
return gr.update(value="")
def reset_state(task_history):
task_history.clear()
return []
@spaces.GPU
def stream_audio_output(history, task_history):
text = task_history[-1][-1]
if not text:
# import pdb;pdb.set_trace()
yield None,None
llm_resounse = replace_equation(remove_special_characters(text))
#print('tts_text', llm_resounse)
for idx, text in enumerate(split_into_sentences(llm_resounse)):
embeddings = llm_embedding(torch.tensor(tokenizer.encode(text)).cuda())
for seg in tts.run(embeddings.reshape(-1, 896).unsqueeze(0), decoder_topk,
None,
codec_chunk_size, codec_padding_size):
if idx == 0:
try:
split_idx = torch.nonzero(seg.abs() > 0.03, as_tuple=True)[-1][0]
seg = seg[:, :, split_idx:]
except:
print('Do not need to split')
pass
if seg is not None and len(seg) > 0:
seg = seg.to(torch.float32).cpu().numpy()
yield 24000, float_to_int16(seg).T
with gr.Blocks(title="VideoMLLM") as demo:
gr.Markdown("""<center><font size=8>VITA</center>""")
chatbot = gr.Chatbot(label='VITA', elem_classes="control-height", height=500)
query = gr.Textbox(lines=2, label='Text Input')
task_history = gr.State([])
with gr.Row():
add_text_button = gr.Button("Submit Text (提交文本)")
add_audio_button = gr.Button("Submit Audio (提交音频)")
with gr.Row():
with gr.Column(scale=2):
addfile_btn = gr.UploadButton("📁 Upload (上传文件[视频,图片])", file_types=["video", "image"])
video_input = gr.Video(sources=[ "webcam"], height=400, width=700, container=True, interactive=True, show_download_button=True, label="📹 Video Recording (视频录制)")
with gr.Column(scale=1):
empty_bin = gr.Button("🧹 Clear History (清除历史)")
record_btn = gr.Audio(sources=[ "microphone","upload"], type="filepath", label="🎤 Record or Upload Audio (录音或上传音频)", show_download_button=True, waveform_options=gr.WaveformOptions(sample_rate=16000))
audio_output = gr.Audio(
label="Output Audio",
value=None,
format= "wav",
autoplay=True,
streaming=True,
interactive=False,
show_label=True,
waveform_options=gr.WaveformOptions(
sample_rate=24000,
),
)
add_text_button.click(add_text, [chatbot, task_history, query], [chatbot, task_history], show_progress=True).then(
reset_user_input, [], [query]
).then(
predict, [chatbot, task_history], [chatbot], show_progress=True
).then(
stream_audio_output,[chatbot, task_history], [audio_output],
)
video_input.stop_recording(add_video, [chatbot, task_history, video_input], [chatbot, task_history], show_progress=True)
empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True)
addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True)
add_audio_button.click(add_audio, [chatbot, task_history,record_btn], [chatbot, task_history], show_progress=True).then(
predict, [chatbot, task_history], [chatbot], show_progress=True
).then(
stream_audio_output,[chatbot, task_history], [audio_output],
)
demo.launch()