Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,959 Bytes
bc752b1 76b1e92 bc752b1 76b1e92 bc752b1 76b1e92 bc752b1 8301b1c bc752b1 76b1e92 bc752b1 76b1e92 d512446 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
import torch
import os
import argparse
import numpy as np
import copy
import gradio as gr
import re
import torchaudio
import io
import cv2
import math
import spaces
from numba import jit
from huggingface_hub import snapshot_download
from vita.constants import DEFAULT_AUDIO_TOKEN, DEFAULT_IMAGE_TOKEN, MAX_IMAGE_LENGTH, MIN_IMAGE_LENGTH, IMAGE_TOKEN_INDEX, AUDIO_TOKEN_INDEX
from vita.conversation import conv_templates, SeparatorStyle
from vita.util.mm_utils import tokenizer_image_token, tokenizer_image_audio_token
from PIL import Image
from decord import VideoReader, cpu
from vita.model.builder import load_pretrained_model
from vita.model.vita_tts.decoder.llm2tts import llm2TTS
from vita.model.language_model.vita_qwen2 import VITAQwen2Config, VITAQwen2ForCausalLM
decoder_topk = 2
codec_chunk_size = 40
codec_padding_size = 10
PUNCTUATION = "!?。"#$%&'()*+,-/:;<=>@[\]^_`{|}~⦅⦆「」、、〃》「」『』【】〔〕〖〗〘〙〚〛〜〝〞〟〰〾〿–—‘'‛""„‟…‧﹏."
MODEL_NAME = "VITA-MLLM/VITA-1.5"
model_path = snapshot_download(MODEL_NAME, local_dir="VITA_ckpt")
tokenizer, model, feature_extractor, context_len = load_pretrained_model(
model_path, model_base=None, model_name="VITA-1.5", model_type="qwen2p5_instruct"
)
llm_embedding = model.get_input_embeddings().cuda()
tts = llm2TTS(os.path.join(model_path, 'vita_tts_ckpt/'))
@jit
def float_to_int16(audio: np.ndarray) -> np.ndarray:
am = int(math.ceil(float(np.abs(audio).max())) * 32768)
am = 32767 * 32768 // am
return np.multiply(audio, am).astype(np.int16)
def remove_special_characters(input_str):
# Remove special tokens
special_tokens = ['☞', '☟', '☜', '<unk>', '<|im_end|>']
for token in special_tokens:
input_str = input_str.replace(token, '')
return input_str
def replace_equation(sentence):
special_notations = {
"sin": " sine ",
"cos": " cosine ",
"tan": " tangent ",
"cot": " cotangent ",
"sec": " secant ",
"csc": " cosecant ",
"log": " logarithm ",
"exp": "e^",
"sqrt": "根号 ",
"abs": "绝对值 ",
}
special_operators = {
"+": "加",
"-": "减",
"*": "乘",
"/": "除",
"=": "等于",
'!=': '不等于',
'>': '大于',
'<': '小于',
'>=': '大于等于',
'<=': '小于等于',
}
greek_letters = {
"α": "alpha ",
"β": "beta ",
"γ": "gamma ",
"δ": "delta ",
"ε": "epsilon ",
"ζ": "zeta ",
"η": "eta ",
"θ": "theta ",
"ι": "iota ",
"κ": "kappa ",
"λ": "lambda ",
"μ": "mu ",
"ν": "nu ",
"ξ": "xi ",
"ο": "omicron ",
"π": "派 ",
"ρ": "rho ",
"σ": "sigma ",
"τ": "tau ",
"υ": "upsilon ",
"φ": "phi ",
"χ": "chi ",
"ψ": "psi ",
"ω": "omega "
}
sentence = sentence.replace('**', ' ')
sentence = re.sub(r'(?<![\d)])-(\d+)', r'负\1', sentence)
for key in special_notations:
sentence = sentence.replace(key, special_notations[key])
for key in special_operators:
sentence = sentence.replace(key, special_operators[key])
for key in greek_letters:
sentence = sentence.replace(key, greek_letters[key])
sentence = re.sub(r'\(?(\d+)\)?\((\d+)\)', r'\1乘\2', sentence)
sentence = re.sub(r'\(?(\w+)\)?\^\(?(\w+)\)?', r'\1的\2次方', sentence)
return sentence
def is_video(file_path):
video_extensions = {'.mp4', '.avi', '.mov', '.mkv', '.flv', '.wmv', '.webm'}
_, ext = os.path.splitext(file_path)
return ext.lower() in video_extensions
def is_image(file_path):
image_extensions = {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff'}
_, ext = os.path.splitext(file_path)
return ext.lower() in image_extensions
def is_wav(file_path):
wav_extensions = {'.wav'}
_, ext = os.path.splitext(file_path)
return ext.lower() in wav_extensions
def load_model_embemding(model_path):
config_path = os.path.join(model_path, 'origin_config.json')
config = VITAQwen2Config.from_pretrained(config_path)
model = VITAQwen2ForCausalLM.from_pretrained(model_path, config=config, low_cpu_mem_usage=True)
embedding = model.get_input_embeddings()
del model
return embedding
def split_into_sentences(text):
sentence_endings = re.compile(r'[,。?\n!?、,?.!]')
sentences = sentence_endings.split(text)
return [sentence.strip() for sentence in sentences if sentence.strip()]
def convert_webm_to_mp4(input_file, output_file):
try:
cap = cv2.VideoCapture(input_file)
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_file, fourcc, 20.0, (int(cap.get(3)), int(cap.get(4))))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
out.write(frame)
cap.release()
out.release()
except Exception as e:
print(f"Error: {e}")
raise
def _get_rawvideo_dec(video_path, max_frames=MAX_IMAGE_LENGTH, min_frames=MIN_IMAGE_LENGTH, video_framerate=1, s=None, e=None):
if s is None or e is None:
start_time, end_time = None, None
else:
start_time = int(s)
end_time = int(e)
start_time = max(start_time, 0)
end_time = max(end_time, 0)
if start_time > end_time:
start_time, end_time = end_time, start_time
elif start_time == end_time:
end_time = start_time + 1
if os.path.exists(video_path):
vreader = VideoReader(video_path, ctx=cpu(0))
else:
raise FileNotFoundError
fps = vreader.get_avg_fps()
f_start = 0 if start_time is None else int(start_time * fps)
f_end = int(min(1000000000 if end_time is None else end_time * fps, len(vreader) - 1))
num_frames = f_end - f_start + 1
if num_frames > 0:
sample_fps = int(video_framerate)
t_stride = int(round(float(fps) / sample_fps))
all_pos = list(range(f_start, f_end + 1, t_stride))
if len(all_pos) > max_frames:
sample_pos = [all_pos[_] for _ in np.linspace(0, len(all_pos) - 1, num=max_frames, dtype=int)]
elif len(all_pos) < min_frames:
sample_pos = [all_pos[_] for _ in np.linspace(0, len(all_pos) - 1, num=min_frames, dtype=int)]
else:
sample_pos = all_pos
patch_images = [Image.fromarray(f).convert("RGB") for f in vreader.get_batch(sample_pos).asnumpy()]
return patch_images, len(patch_images)
else:
print(f"video path: {video_path} error.")
def _parse_text(text):
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = "<br></code></pre>"
else:
if i > 0 and count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>" + line
return "".join(lines)
@spaces.GPU
def predict(_chatbot, task_history):
chat_query = task_history[-1][0]
print(task_history)
conv_mode = "qwen2p5_instruct"
conv = conv_templates[conv_mode].copy()
all_audio_path = []
all_visual_tensor = []
qs = ''
input_mode = 'lang'
for i, (q, a) in enumerate(task_history):
if isinstance(q, (tuple, list)):
if is_image(q[0]):
images = [Image.open(q[0]).convert("RGB")]
all_visual_tensor.extend(images)
input_mode = 'image'
qs += DEFAULT_IMAGE_TOKEN * len(images) + '\n'
elif is_video(q[0]):
video_frames, slice_len = _get_rawvideo_dec(q[0])
all_visual_tensor.extend(video_frames)
input_mode = 'video'
qs += DEFAULT_IMAGE_TOKEN * slice_len + '\n'
elif is_wav(q[0]):
if a is not None and a.startswith('☜'):
continue
else:
all_audio_path.append(q[0])
new_q = qs + DEFAULT_AUDIO_TOKEN
qs = ''
conv.append_message(conv.roles[0], new_q)
conv.append_message(conv.roles[1], a)
else:
new_q = qs + q
qs = ''
conv.append_message(conv.roles[0], new_q)
conv.append_message(conv.roles[1], a)
prompt = conv.get_prompt(input_mode)
if all_audio_path != []:
input_ids = tokenizer_image_audio_token(
prompt, tokenizer,
image_token_index=IMAGE_TOKEN_INDEX,
audio_token_index=AUDIO_TOKEN_INDEX
)
audio_list = []
for single_audio_path in all_audio_path:
try:
audio, original_sr = torchaudio.load(single_audio_path)
target_sr = 16000
if original_sr != target_sr:
resampler = torchaudio.transforms.Resample(orig_freq=original_sr, new_freq=target_sr)
audio = resampler(audio)
audio_features = feature_extractor(audio, sampling_rate=target_sr, return_tensors="pt")["input_features"]
audio_list.append(audio_features.squeeze(0))
except Exception as e:
print(f"Error processing {single_audio_path}: {e}")
else:
input_ids = tokenizer_image_token(
prompt, tokenizer,
image_token_index=IMAGE_TOKEN_INDEX
)
if all_visual_tensor == [] and all_audio_path == []:
datapromt = {
"prompt_token_ids": input_ids,
}
elif all_visual_tensor != [] and all_audio_path == []:
datapromt = {
"prompt_token_ids": input_ids,
"multi_modal_data": {
"image": all_visual_tensor
},
}
elif all_visual_tensor == [] and all_audio_path != []:
datapromt = {
"prompt_token_ids": input_ids,
"multi_modal_data": {
"audio": audio_list
},
}
else:
datapromt = {
"prompt_token_ids": input_ids,
"multi_modal_data": {
"image": all_visual_tensor,
"audio": audio_list
},
}
print(datapromt)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=all_visual_tensor if all_visual_tensor else None,
audios=audio_list if audio_list else None,
do_sample=False,
temperature=0.01,
top_p=None,
num_beams=1,
output_scores=True,
return_dict_in_generate=True,
max_new_tokens=1024,
use_cache=True,
)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=False)[0]
outputs = outputs.strip()
task_history[-1] = (chat_query, outputs)
remove_special_characters_output = remove_special_characters(outputs)
_chatbot[-1] = (chat_query, _parse_text(remove_special_characters_output))
print("query", chat_query)
print("task_history", task_history)
print(_chatbot)
print("answer: ", outputs)
yield _chatbot
def add_text(history, task_history, text):
task_text = text
if len(text) >= 2 and text[-1] in PUNCTUATION and text[-2] not in PUNCTUATION:
task_text = text[:-1]
history = history + [(_parse_text(text), None)]
task_history = task_history + [(task_text, None)]
return history, task_history, ""
def add_file(history, task_history, file):
history = history + [((file.name,), None)]
task_history = task_history + [((file.name,), None)]
return history, task_history
def add_audio(history, task_history, file):
print(file)
if file is None:
return history, task_history
history = history + [((file,), None)]
task_history = task_history + [((file,), None)]
return history, task_history
def add_video(history, task_history, file):
print(file)
if file is None:
return history, task_history
new_file_name = file.replace(".webm",".mp4")
if file.endswith(".webm"):
convert_webm_to_mp4(file, new_file_name)
task_history = task_history + [((new_file_name,), None)]
return history, task_history
def reset_user_input():
return gr.update(value="")
def reset_state(task_history):
task_history.clear()
return []
@spaces.GPU
def stream_audio_output(history, task_history):
text = task_history[-1][-1]
if not text:
# import pdb;pdb.set_trace()
yield None,None
llm_resounse = replace_equation(remove_special_characters(text))
#print('tts_text', llm_resounse)
for idx, text in enumerate(split_into_sentences(llm_resounse)):
embeddings = llm_embedding(torch.tensor(tokenizer.encode(text)).cuda())
for seg in tts.run(embeddings.reshape(-1, 896).unsqueeze(0), decoder_topk,
None,
codec_chunk_size, codec_padding_size):
if idx == 0:
try:
split_idx = torch.nonzero(seg.abs() > 0.03, as_tuple=True)[-1][0]
seg = seg[:, :, split_idx:]
except:
print('Do not need to split')
pass
if seg is not None and len(seg) > 0:
seg = seg.to(torch.float32).cpu().numpy()
yield 24000, float_to_int16(seg).T
with gr.Blocks(title="VideoMLLM") as demo:
gr.Markdown("""<center><font size=8>VITA</center>""")
chatbot = gr.Chatbot(label='VITA', elem_classes="control-height", height=500)
query = gr.Textbox(lines=2, label='Text Input')
task_history = gr.State([])
with gr.Row():
add_text_button = gr.Button("Submit Text (提交文本)")
add_audio_button = gr.Button("Submit Audio (提交音频)")
with gr.Row():
with gr.Column(scale=2):
addfile_btn = gr.UploadButton("📁 Upload (上传文件[视频,图片])", file_types=["video", "image"])
video_input = gr.Video(sources=[ "webcam"], height=400, width=700, container=True, interactive=True, show_download_button=True, label="📹 Video Recording (视频录制)")
with gr.Column(scale=1):
empty_bin = gr.Button("🧹 Clear History (清除历史)")
record_btn = gr.Audio(sources=[ "microphone","upload"], type="filepath", label="🎤 Record or Upload Audio (录音或上传音频)", show_download_button=True, waveform_options=gr.WaveformOptions(sample_rate=16000))
audio_output = gr.Audio(
label="Output Audio",
value=None,
format= "wav",
autoplay=True,
streaming=True,
interactive=False,
show_label=True,
waveform_options=gr.WaveformOptions(
sample_rate=24000,
),
)
add_text_button.click(add_text, [chatbot, task_history, query], [chatbot, task_history], show_progress=True).then(
reset_user_input, [], [query]
).then(
predict, [chatbot, task_history], [chatbot], show_progress=True
).then(
stream_audio_output,[chatbot, task_history], [audio_output],
)
video_input.stop_recording(add_video, [chatbot, task_history, video_input], [chatbot, task_history], show_progress=True)
empty_bin.click(reset_state, [task_history], [chatbot], show_progress=True)
addfile_btn.upload(add_file, [chatbot, task_history, addfile_btn], [chatbot, task_history], show_progress=True)
add_audio_button.click(add_audio, [chatbot, task_history,record_btn], [chatbot, task_history], show_progress=True).then(
predict, [chatbot, task_history], [chatbot], show_progress=True
).then(
stream_audio_output,[chatbot, task_history], [audio_output],
)
demo.launch()
|